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The problem: Unbounded integrands, e.g. in finance

Why do we need corner avoidance? Because of singularities there!!!

Pricing derivatives: (Fundamental theorem; Delbaen, Schachermayer (1994))

eVt = EQ
h

e−rT CT ({St})
˛̨̨
Ft

i
with path-dependent Payoff CT , share price process (St )0≤t≤T , interest rate t and
equivalent martingale measure Q.

Asian option: With t ≤ t1 < t2 < · · · < ts ≤ T , the payoff at time T of an Asian option
with strike K is

CT =

 
1
s

sX
i=1

Sti − K

!+

=

 
1
k

sX
i=1

e
Pi

j=1 xj − K

!+

Increments x have joint distribution H (under Q), often independent increments:

H(x) = H1(x1)H2(x2) · · ·Hs(xs)
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The problem: Unbounded integrands, e.g. in finance

Because of singularities there!!!

Transformation from Rd back to [0, 1]d by componentwise inversion method (⇒ copula,
for independent increments the independence copula results):

Fair price/value at time t

eVt =
1

erT

Z
Rs

 
S0

s

sX
i=1

e
Pi

j=1 xj−K

!+

dH(x)

Inv.
=

1
erT

Z
[0,1]s

 
S0

s

sX
i=1

e
Pi

j=1 H−1
j (1−xj ) − K

!+

dx

Problem: eH−1
j (1−xj ) is unbounded at xj = 0!
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Theorems for unbounded integrands

Extensions of Koksma-Hlawka to unbounded integrands

Despite the unbounded integrand, a convergence order can be shown for QMC:

Theorem (Owen (2006); Hartinger, K. (2005) for general distributions H)

Let f : Us 7→ R satisfy |∂u f | ≤ B
Qs

i=1 x−Ai−χu(i)
i with Ai > 0 for all u ⊆ {1, . . . , s}. Let

the sequence (xn)1≤n fulfill
sY

i=1

xn,i ≥ cN−r (”Origin-avoidance”) . (1)

Then˛̨̨̨Z
Us

f (x)dx−
1
N

X
f (xn)

˛̨̨̨
≤ C1D∗N(x1, . . . , xN)N r maxi Ai + C2N r (maxi Ai−1)

Similar theorem for other corners (1 and mixed corners)

New Problem: Need sequences with
Qs

i=1 xn,i ≥ cN−r with r as small as
possible!

Eqn. (1) means that the sequence avoids a hyperbolically shaped region around
the origin.
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Known results about origin avoidance

Existing results about Origin Avoidance

The origin x0 = 0 is left out in our considerations!

r ≥ 1 obvious from the construction of (t , s)-nets and Halton sequences.

Sobol’ sequences:

Theorem (Sobol’ (1973), in Russian)

The product of the coordinates of the elements xn of the Sobol’ Πτ sequence in
dimension d for 1 ≤ n < 2ν fulfills

xn,1 · . . . xn,d ≥ 2−(ν+d+τ) (⇒ r = 1)

Halton sequences:

Theorem (Owen (2005))

For n ≥ 1, let xn be the n’th point in a Halton sequence with distinct prime bases
p1, . . . , pd . Then

dY
j=1

x j
n ≥

1
n

dY
j=1

p−1
j and

dY
j=1

“
1− x j

n

”
≥

1
n + 1

dY
j=1

p−1
j
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Origin avoidance of generalized Niederreiter sequences

Origin avoidance of generalized Niederreiter sequences

Theorem (Hartinger, K., Ziegler (2005))

Let (xn)n≥1 be a generalized Niederreiter (t , s)-sequence (using Tezuka’s
construction) and 0 < n < bl then

sY
i=1

x (i)
n ≥ b−l−s−t . (⇒ r = 1)

Sobol’, Faure and Niederreiter sequences are special cases of Tezuka’s construction!

Idea of the proof.

(0, s)-sequences (e.g. Faure): (xn)0≤n<bl forms a (0, l, s)-net. Cover the regionQs
i=1 x (i)

n < b−l−s with elementary intervals of volume b−l that include 0 (and by
definition only one element of the sequence).

(t , s)-sequences: (xn)0≤n<bl forms a (t , l, s)-net. There are elementary intervals
[0, a) of volume b−l that only one (!) element of the sequence. (Proof follows along the
lines of a lemma by Tezuka and Sobol’s proof for the Sobol sequence)

This one element is x0 = 0, so all other elements lie outside the hyperbolic region.
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Definitions; Why do we need this?

Corner Avoidance, Motivation and Definitions

Often integrands have singularities not only at one corner / along one boundary
(e.g. ”bathtube shape” 1

x(1−x)
)

Definition (Mixed corners and distance to corners)

Let h ∈ {0, 1}s be any corner of the unit cube. If h 6= 0 and h 6= 1, we call h a mixed
corner. The minimum distance of the first N elements of the sequence (xn)n∈N to the
corner h is

MN(h1, . . . , hs) = min
1≤n≤N

sY
i=1

˛̨̨
hi − x (i)

n

˛̨̨
We use the notation:

J = {i ∈ {1, . . . , s} : hi =0} , K = {i ∈ {1, . . . , s} : hi =1} .
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Definitions; Why do we need this?

Definition

The corner avoidance coefficient r(h) for corner h ∈ {0, 1}s is defined by:

MN(h) ≥ cN−r(h)

What is r(h) for the various low-discrepancy sequences?

r(h) ≥ 1 clear for Halton and (0, s)-sequences.

Is r(h) independent of the corner, i.e. do the sequences tend towards all corners
in a similar manner?

For h = 0 we have r(0) = 1 for Halton and generalized Niederreiter sequences.
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Corner avoidance of the Halton sequence

The Halton sequence avoids mixed corners less than the origin

Theorem (Owen (2006))

MN(1) ≥
c

N + 1
and MN(h) ≥

c
N(N + 1)

for h 6= 0 and h 6= 1

Thus, r(1) = 1 and 1 ≤ r(h) ≤ 2.

Theorem (Hartinger, K., Ziegler (2005))

For the Halton sequence in relatively prime bases p1, . . . , ps there exist subsequences
yn = xN(n) for which the minimum distance to any mixed corner h is bounded from
above by

MN(n)(h) ≤
C

N log N
.

In particular, the corner avoidance of the Halton sequence cannot be of order 1
N , at

best 1
N log N ≈ 1

N1+ε .

Proof by a simple construction of N(n) using Euler’s theorem.
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Lower bound for the corner avoidance of the Halton sequence

Corner avoidance of the Halton sequence is r(h) = 1 + ε

Theorem (Hartinger, K., Ziegler (2005))

For the Halton sequence in relatively prime bases p1, . . . , ps we have

MN = min
h

MN(h) ≥
c

N1+ε
.

Proof.

It is easy to see that:

n ≡ 0 mod (pα
i )

n 6= 0 mod (pα+1
i )

)
⇒ . . . x0 . . . 0| {z }

α

⇒ p−α−1
i ≤ Φn(pi ) = x (i)

n < pα
i ,

n ≡ −1 mod (pβ
i )

n 6= −1 mod (pβ+1
i )

)
⇒ . . . x1 . . . 1| {z }

β

⇒ p−β−1
i ≤ 1− Φpi (n) = x (i)

n < pβ
i ,
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Lower bound for the corner avoidance of the Halton sequence

Proof (Continued).

Problem: Given N, ”find” an integer n, with 0 < n ≤ N and

n = C
Y
j∈J

p
αj
j and n + 1 = C̃

Y
k∈K

pβk
k , (2)

which minimizes

d =
Y
k∈K

p−βk
k

Y
j∈J

p
−αj
j .

By subtracting the equations (2) we get the diophantane equation

1 = C̃
Y
k∈K

pβk
k − C

Y
j∈J

p
αj
j

with unknown integers C, C̃, βk , and αj .

Example. Let s = 2, p1 = 2, p2 = 3 and consider the corner (0, 1). The equation then
is

1 = C̃3β − C2α.
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Schmidt’s subspace theorem

Schmidt’s subspace theorem

Theorem (Subspace Theorem)

Let K be an algebraic number field and let
S ⊂ M(K ) = {canonical absolute values of K} be a finite set of absolute values which
contains all of the Archimedian ones. For each ν ∈ S let Lν,1, · · · , Lν,n be n linearly
independent linear forms in n variables with coefficients in K . Then for given δ > 0, the
solutions of the inequality

Y
ν∈S

nY
i=1

|Lν,i (x)|nν
ν < |x|−δ

with x ∈ an
K and x 6= 0, where

|x| = max
1≤i≤n

1≤j≤deg K

|x (j)
i |,

| · |ν denotes valuation corresponding to ν, nν is the local degree and aK is the
maximal order of K , lie in finitely many proper subspaces of K n.
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Schmidt’s subspace theorem

Corner avoidance of Halton sequence is r(h) = 1 + ε (cont.)

Proof (Continued).

Use x1 = N + 1 and x2 = N.

Case 1: If
eCC
x2
≥ N−ε, it’s straightforward to show that d ≥ (N + 1)−1−ε and our result

follows.

Case 2: If
eCC
x2

< N−ε, the subspace theorem proves (by using appropriate linear forms
Lν,1(x , y), Lν,2(x , y) and L∞,2(x , y) and valuations corresponding to the primes
p1, . . . , ps and the Archimedian valuation) that all solutions lie in finitely many proper
subspaces of Q2, i.e.

x1a + x2b = 0 .

Together with x1 − x2 = 1 it follows that this case happens only finitely often. Thus its
effect is absorbed in the constant.

All-corner avoidance of the Halton sequence is almost O
“

1
n

”
.

Proof is highly non-constructive!

Value / Bound for the constant is not known.
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Faure sequences tend faster towards mixed corners

Faure sequences behave differently!

From the definition of the s-dimensional Faure sequence (Pascal matrix) in base p
follows that a coordinate shift (x1, . . . , xs) 7→ (x2, . . . , xs, x1) corresponds to a
permutation of the elements with pl ≤ n < pl+1.

Theorem (Corner avoidance of mixed corners; Hartinger, K., Ziegler (2005))

Let s be prime and h be a mixed corner (i.e. h 6= 0 and h 6= 1). There exists a
subsequence yn = xN(n) of the Faure sequence, such that

sY
i=1

˛̨
hi − yn,i

˛̨
≤

p3

N(n)2
. (3)

Thus, we have a bound r(h) ≥ 2.

Constructive proof: Consider the subsequence N(n) = (p − 1)ppn−1 and possibly shift
the coordinates to have h1 = 0, hp = 1.
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Faure sequences tend faster towards mixed corners

Theorem (Corner avoidance at 1; Hartinger, K., Ziegler (2005))

Let h = 1. There exists a subsequence yn = xN(n) of the Faure sequence such that

sY
i=1

(1− yn,i ) ≤

8<:
p2

N(n)2 for s = 2
p3

N(n)3/2 for s > 2

Thus, we have the bounds r(1) ≥ 2 for s = 2 and r(1) ≥ 3
2 for s > 2.

Constructive proof: Consider the subsequence N(n) = 22n−1 − 1 for s = 2 and the
subsequence N(n) = p2pn−1 − 1 for s > 2. The theorem then follows easily from the
properties of the Faure sequences.

These theorems show that the Faure sequence tends towards the mixed and
upper corners significantly faster than the Halton sequence.
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Thank you for your attention!
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