
An extensive MusicXML 2.0 test suite

Reinhold Kainhofer

Vienna University of Technology,
Wiedner Hauptstraße 8-10/105-1, A-1040 Wien, Austria,

and
GNU LilyPond, http://www.lilypond.org/

and
Edition Kainhofer, Music Publishing, Wien, Austria

reinhold@kainhofer.com, http://reinhold.kainhofer.com/

Abstract. MusicXML [4] – a widely used interchange format for music
data based on XML (Extensible Markup Language) – is specified us-
ing DTD (Document Type Definition) files and equivalently some XSD
(XML Schema Document) files. However, up to date, no representative
archive of MusicXML unit test files has been available for testing pur-
poses. Here, we present such an extensive unit test suite. Although origi-
nally intended as regression testing tools for the MusicXML to LilyPond
converter (musicxml2ly), it has turned into a general MusicXML test
suite consisting of more than 120 MusicXML test files, each checking
one particular aspect of the MusicXML specification. The connection to
the LilyPond project also makes it possible to provide sample renderings
of the test cases produced by LilyPond’s MusicXML converter.
The test suite is available at: http://kainhofer.com/musicxml/

Key words: MusicXML, Test suite, Regression testing, Music data format

1 Introduction

MusicXML has become the de-facto exchange format for visual music data,
supported by dozens of software applications as an import or export format, or
even as their native data format. It has also been proposed for scientific uses like
musicological analysis and for online-music editing. The newly published Open
Score Format specification [5] also uses MusicXML as its data format.

Despite a full syntactic definition of the MusicXML format [4] by Recordare,
no official suite of representative MusicXML test files has been available for
developers implementing MusicXML support in their applications. The only help
were the comments and explanations given in the specification to create test cases
manually. The predominant advice is to use the Dolet plugin for Finale1, which
1 The MusicXML import and export functionality of the commercial music notation

program “Finale” is provided through a plugin called “Dolet” and developed by
Recordare. Finale itself includes only a limited version of this plugin, while complete
MusicXML 2.0 support is available by the full Dolet 5 for Finale plugin available
from Recordare separately.

http://www.lilypond.org/
reinhold@kainhofer.com
http://reinhold.kainhofer.com/
http://kainhofer.com/musicxml/


2 Reinhold Kainhofer

is a proprietary Windows and MacOS application that is not easily available for
Open Source developers working on Linux. Also, this approach invariably will
lead MusicXML to be interpreted as behaving like the Dolet plugin instead of
being an application-independent specification.

This lack of a complete set of MusicXML test files was our main incentive for
creating the present test suite [2]. Due to the complexity of musical notation, a
complete set of test cases covering every possible combination of notation and all
possible combinations of XML attributes and elements is probably out of reach.
However, we have attempted to create representative samples to catch as many
common combinations as possible2. Our main goals were to create small unit test
cases, covering not only the most common features of MusicXML, but also some
less used musical notation elements, like complex time signatures, instrument
specific markup, microtones, etc.

It is available for download at: http://kainhofer.com/musicxml

2 Structure of the test suite

We identified twelve different feature categories, each dealing with separate as-
pects of the MusicXML specification, and have further split them into more
specific areas (see Table 2). An example of such a feature category would be
“Staff attributes”, while the more specific areas in that category are “Time sig-
natues”, “Keys signature” and “Clefs”. For each of these we have created several
test cases.

The categorization leaves room for further enhancements of MusicXML by
not assigning all possible numbers used to identify feature categories. The choice
of the feature categories is not related to the structure of the MusicXML speci-
fication into several (dependent) DTD files, but rather designed from the view-
point of an implementor of MusicXML functionality.

The test suite currently consists of more than 120 test cases, each representing
one particular aspect of the MusicXML format. The file name (for example
“13d-KeySignatures-Microtones.xml”) starts with two digits, encoding the
area of the test (see Table 1 for the exact meaning of the first two digits),
followed by a letter to enumerate the test cases within each category. Finally, a
short verbal description3 is given in the file name.

If a feature has multiple possible attribute values or different uses within a
score, the corresponding test file contains several subtests, separated as much as
possible by using different notes or even different measures or staves for each of
the values or combinations.
2 For example, pitch information in MusicXML includes pitch, alteration and absolute

octave information. However, some notation programs use relative mode, where the
octave of a note is taken relative to the previous note. For these applications, it is
not sufficient to simply check some notes with given absolute pitch, but also provide
a test case for different intervals between two subsequent notes.

3 A more detailed description is given inside the XML file in a <miscellaneous-field

name="description"> element.

http://kainhofer.com/musicxml


An extensive MusicXML 2.0 test suite 3

01-09 ... Basics
01 Pitches
02 Rests
03 Rhythm

10-19 ... Staff attributes
11 Time signatures
12 Clefs
13 Key signatures

20-29 ... Note-related elements
21 Chorded notes
22 Note settings, heads, etc.
23 Triplets, Tuplets
24 Grace notes

30-39 ... Dynamics, artic., spanners
31 Dynamics and other single symbols
32 Notations and Articulations
33 Spanners

40-44 ... Parts
41 Multiple parts (staves)
42 Multiple voices per staff
43 One part on multiple staves

45-49 ... Measures and repeats
45 Repeats
46 Barlines, Measures

50-54 ... Page-related issues
51 Header information
52 Page layout

55-59 ... Exact positioning

60-69 ... Vocal music
61 Lyrics

70-75 ... Instrument-specific
71 Guitar notation
72 Transposing instruments
73 Percussion
74 Figured bass
75 Other instrumental notation

80-89 ... MIDI and sound

90-99 ... Other aspects
90 Compressed MusicXML files
99 Compat. with broken MusicXML

Table 1. Structure of the files, categorized by file name. Not all numbers are
assigned to leave room for future extensions of the test suite and the MusicXML
specification.

For example, parenthesized notes or rests
use the parentheses attribute of a notehead
XML element. However, for an application it
might make a difference if that note is a note

� ��� �
� �
� �
���

4
6�

� ��� �� � �
��� �� �

on its own, a note with a non-standard note head or if it is part of a chord.
Similarly, rests can have a default position in the staff or an explicit staff position.
The test case for parenthesizing (shown on the right) covers all these cases.

For practical reasons, the number of files in a test suite should not be too
large to allow also manual checking of test cases. On the other hand, if too many
different cases or attribute combinations are included in the same file, bugs in
one feature area can influence test results for other features. This makes is harder
to find the actual cause of a problem and deviates from the idea of unit tests.

One of the main aims for the test suite was thus to provide a good balance
between a relatively low number of test files, while still clearly separating test
cases for different features to avoid the described influences.



4 Reinhold Kainhofer

3 Examples of unit tests

The unit test files are kept as simple as possible, so that they can best fulfil their
purpose of checking only one particular aspect. For example, the unit test file
33b-Spanners-Tie.xml for simple ties – a trivial feature, which still needs to
be tested in regression tests – reads:

<?xml ve r s i on =”1.0”
encoding=”ISO−8859−1”
standalone=”no”?>

<!DOCTYPE score−partwi se PUBLIC
”−//Recordare //DTD MusicXML
0.6b Partwise //EN” [ . . . ] >

<score−partwise>
< i d e n t i f i c a t i o n >

<misce l l aneous >
<misce l l aneous− f i e l d

name=”de s c r i p t i o n”>Two t i ed
notes </misce l l aneous−f i e l d >

</misce l l aneous >
</ i d e n t i f i c a t i o n >
<part−l i s t ><score−part

id=”P1”/></part−l i s t >
<part id=”P1”>

<measure number=”1”>
<a t t r i bu t e s >

<d i v i s i o n s >1</d i v i s i o n s >
<key><f i f t h s >0</ f i f t h s ></key>
<time>

<beats >4</beats>
<beat−type>4</beat−type>

</time>
<staves >1</staves>
<c l e f number=”1”>

<s ign>G</s ign>
<l i n e >2</l i n e >

</c l e f >
</a t t r i bu t e s >
<note>

<pitch>

<step>F</step>
<octave >4</octave>

</pitch>
<duration >4</duration>
<t i e type=”s t a r t ”/>
<voice >1</voice>
<type>whole</type>
<notat ions><t i e d

type=”s t a r t ”/></notat ions>
</note>

</measure>
<measure number=”2”>

<note>
<pitch>

<step>F</step>
<octave >4</octave>

</pitch>
<duration >4</duration>
<t i e type=”stop”/>
<voice >1</voice>
<type>whole</type>
<notat ions><t i e d

type=”stop”/></notat ions>
</note>

</measure>
</part>

</score−partwise>

�
4
4 � �

Other test files check for more exotic MusicXML features, like for example the
test case for non-traditional key signatures with microtone alterations (excerpt
of 13d-KeySignatures-Microtones.xml):

<a t t r i bu t e s >
<key>

<key−step >4</key−step>
<key−a l t e r >−1.5</key−a l t e r >
<key−step >6</key−step>
<key−a l t e r >−0.5</key−a l t e r >
<key−step >0</key−step>
<key−a l t e r >0</key−a l t e r >
<key−step >1</key−step>
<key−a l t e r >0.5</key−a l t e r >
<key−step >3</key−step>
<key−a l t e r >1.5</key−a l t e r >

</key>
</a t t r i bu t e s >

�� ��� ��
4
2

However, in all cases the structure of the test file is kept as simple as possible
to avoid cross-interactions of bugs in different areas of an application.



An extensive MusicXML 2.0 test suite 5

4 Sample renderings

Originally, the files of the test suite were generated as test cases for the imple-
mentation of musicxml2ly, a utility to convert MusicXML files into the LilyPond
[3] format. Using this utility, sample renderings of all the test cases can be created
automatically and are made available on the homepage of the test suite.

However, as the musicxml2ly converter does not yet support every aspect of
MusicXML correctly, these renderings cannot be regarded as official reference
renderings, but rather as an indication how one particular application under-
stands the files.

5 License of the test suite

As one of the purposes of a test suite for a standard is that it can be freely
used for testing purposes of any application or tool using this standard, the
MIT license was chosen for the test suite. This means that there are no usage
restrictions and the set of test files can be freely used for any purpose, as long
as the LICENSE file (or the copyright notice) is preserved.

6 Conclusion

The MusicXML test suite presented here provides software developers in the area
of music notation with an extensive set of representative test cases to check con-
formance to the MusicXML specification and to perform regression and coverage
tests.

Even though MusicXML has established itself as an industry standard for
the extremely hard and complex task of exchanging music notation, it is still
encumbered with some minor issues. The problems we encountered while creating
the test suite were reported and discussed with the authors of the MusicXML
specification on the semi-public MusicXML mailing list.

One can expect that future versions of MusicXML will solve or at least soften
most of the issues we encountered.

References

1. M. Good. Lessons from the adoption of MusicXML as an interchange standard. In
Proc. XML 2006, 2006.

2. R. Kainhofer. Unofficial MusicXML test suite. http://kainhofer.com/musicxml/,
2009. Representative set of MusicXML test cases.

3. H.-W. Nienhuys and J. N. et al. GNU LilyPond. http://www.lilypond.org/, 2010.
4. Recordare LLC. MusicXML 2.0. Document Type Definition (DTD): http:

//musicxml.org/dtds, XML Schema Definition (XSD): http://musicxml.org/xsd,
2010.

5. Yamaha Corporation. Open Score Format (OSF, ver. 1.0), packaging specification,
2009. http://openscoreformat.sf.net/.

http://kainhofer.com/musicxml/
http://www.lilypond.org/
http://musicxml.org/dtds
http://musicxml.org/dtds
http://musicxml.org/xsd
http://openscoreformat.sf.net/

	An extensive MusicXML 2.0 test suite
	Reinhold Kainhofer
	1 Introduction
	2 Structure of the test suite
	3 Examples of unit tests
	4 Sample renderings
	5 License of the test suite
	6 Conclusion



