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Abstract

This thesis is devoted to the development and application of various Quasi-Monte Carlo meth-
ods for numerical integration and also for the solution of differential equations. In contrast to
Monte Carlo schemes, they employ deterministic sequences with good distribution properties.
This has the effect that explicit error bounds can be shown, and the numerical error usually
is improved compared to Monte Carlo methods.

First, a dividend barrier model from risk theory is investigated, where the dividend pay-
ments and the survival probability can be described by integro-differential equations. Several
different schemes for their solution are presented and compared.

Second, a Quasi-Monte Carlo algorithm for the solution of retarded differential equations is
developed. While for slowly changing equations conventional methods perform better, for
heavily oscillating equations Quasi-Monte Carlo schemes become competitive and might even
be applied in unstable regions where conventional schemes fail.

Finally, the problem of numerical integration of singular functions with respect to a given
density is explored. A convergence theorem is proved, and an adapted construction schemes
for non-uniformly distributed low-discrepancy sequences is presented. As a numerical example
from finance the valuation of an Asian option is investigated. Several different scheme for the
singular non-uniform integration are compared, and again the Quasi-Monte Carlo approach
turns out to be the most beneficial.



Zusammenfassung

Diese Dissertation widmet sich der Entwicklung diverser Quasi-Monte Carlo (QMC) Verfah-
ren zur numerischen Integration sowie zur Losung von Differentialgleichungen. Im Gegensatz
zu Monte Carlo Verfahren basieren diese auf deterministischen Folgen mit guten Verteilungs-
eigenschaften. Dadurch konnen explizite Fehlerschranken angegeben und numerische Fehler
deutlich verbessert werden.

Der erste Teil beschéftigt sich mit einem Modell einer Dividendenschranke in der Risikotheorie,
wobei die Dividenden und die Uberlebenswahrscheinlichkeit durch Integro-Differentialglei-
chungen beschrieben werden. Verschiedene Schemata zu deren Losung werden prisentiert
und verglichen.

Im zweiten Teil wird ein QMC Algorithmus fiir retardierte Differentialgleichungen entwor-
fen. Wéhrend fiir sich langsam dndernde Gleichungen konventionelle Runge-Kutta Verfahren
bessere Ergebnisse liefern, kénnen Quasi-Monte Carlo Methoden bei schnell oszillierenden
Gleichungen teilweise sogar in Bereichen angewendet werden, wo konventionelle Verfahren
versagen.

Im dritten Teil wird das Problem der numerischen Integration von singuléren Funktionen
beziiglich beliebiger Dichten behandelt. Neben einem Konvergenzbeweis wird eine Folgenkon-
struktion von Hlawka and Miick adaptiert. Als Beispiel aus der Finanzwissenschaft dient die
Bewertung asiatischer Optionen, wobei mehrere Methoden zur Auswertung des singuldren
Integrals verglichen werden. Auch hier zeigt sich, dass der QMC Zugang am vorteilhaftesten
ist.
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Chapter 1

Introduction

For the solution of high-dimensional integration problems conventional numerical integration
techniques like the trapezoidal rule quickly become infeasible as the quality of the error bounds
decreases drastically with the number of dimensions. To some extent the occurrence of Monte
Carlo methods in the middle of the last century, which employ random numbers to approxi-

mate the integral, was able to cure this problem, but for these methods only stochastic error
1
VN
nodes used in the calculation, however, no longer depend on the dimension of the problem,

bounds can be given. The error bounds of order O < >, where N denotes the number of
and the numerical errors can be improved considerably compared to conventional methods.
Thus for high-dimensional integration Monte Carlo methods quickly became state-of-the-art
tools.

Although random numbers are used in Monte Carlo methods, eventually it became clear that
it is not the randomness of the employed point sets, but rather their distribution properties
that determine the quality of the numerical calculation. For this reason, Quasi-Monte Carlo
methods were suggested, where the used sequence no longer contains any randomness, but
follows a clear construction scheme. This has several positive effects, namely that

e a calculated result can be exactly reproduced at any time (which is not possible when

employing random numbers),
e strict error bounds can be given, and

e these error bounds for the best known sequences have a better asymptotic order, namely
O <1°g]\s,N), than Monte Carlo methods.

The aim of this thesis is to develop such Quasi-Monte Carlo algorithms for several problems
that frequently occur in various disciplines, with particular focus on problems from finance,

natural sciences and engineering.
The work is structured as follows:

First I will give a short introduction to Quasi-Monte Carlo methods in Chapter 2, where the
most important definitions and well-known theorems from discrepancy theory are recalled, as
well as the most frequently used low-discrepancy sequences. That chapter is not meant as a
comprehensive introduction to Quasi-Monte Carlo methods, but rather to provide only the
necessary tools which will be applied later in the remainder of the thesis.
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The thesis covers three larger topics, one from risk theory, a second from numerical analysis,
and the final one from finance.

In particular, in the first part of this work (Chapters 3 and 4) we will investigate the numerical
solution of integro-differential equations at the example of dividend strategies in ruin theory.
We model an insurance company with claims that follow some distribution, and if the surplus
process exceeds some (parabolic) threshold, dividends are paid out to the shareholders. The
resulting integro-differential equations for the expected dividend payments and the survival
probability cannot be solved analytically (like in the case of linear dividend barriers), so we
iterate these operators and employ Quasi-Monte Carlo integration techniques to the resulting
high-dimensional integrals. In Chapter 4 we extend the model to include interest on the
surplus, and in a separate model we introduce an absorbing upper barrier for the surplus
process. The results presented in these chapters were obtained in collaboration with H.
Albrecher and R. Tichy.

The topic of the second part (Chapters 5 and 6) will be the application of Quasi-Monte Carlo
techniques to heavily oscillating delayed differential equations (DDE). These are differential
equations that do not only involve the function y(¢) and its derivatives at time ¢, but also
depend on past values y(t — 7(¢)). Such equations appear for example in electronics when one
tries to describe the oscillations in circuits with feedback.

For delayed differential equations several solution methods are known, most of which apply
Runge-Kutta schemes that extrapolate the new value of the solution at time ¢ from very few
nodes at previous time steps. However, if the equation oscillates heavily, a few nodes cannot
ensure a good extrapolation, and so the conventional methods fail. Instead of taking only
a few function values, we will do a Quasi-Monte Carlo integration over the whole relevant
interval so that the oscillations average out and the error stays small. The dependence of
the differential equations on past values of the solution will be solved by the use of Hermite
interpolation.

As we shall see, for slowly varying equations our Quasi-Monte Carlo method clearly cannot
compete with conventional Runge-Kutta schemes, but for heavily varying delay differential
equations the Runge-Kutta QMC methods we develop might even be applied in regions where
conventional methods become unstable.

The third part of this work is dedicated to the problem of integrating singular functions with
respect to a measure other than the uniform distribution. Sobol [64] already treated the uni-
form QMC integration of functions with a singularity at one vertex of the integration interval.
In Chapter 7 this problem is generalized to the evaluation of an integral [ f(x)dH(x), where
f is allowed to have singularities at the boundary of the integration domain and H denotes
an arbitrary probability density function. Convergence of Quasi-Monte Carlo integration is
shown under conditions on the function f(x) and the point sequence that is used for the QMC
integration. Additionally, a construction scheme for suitable sequences is presented, which
fulfill these conditions better than a scheme proposed by Hlawka and Miick [41, 42, 43].

Finally, in Chapter 8 this method is applied to the problem of valuing an Asian option.
Therein, one is faced with two problems: One being the need to generate non-uniformly
distributed variates, and the other being the singular integrand function. Several different
ways to evaluate the integral are investigated, and the results from Chapter 7 are applied to
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enable the use of non-uniform Quasi-Monte Carlo integration of the singular function. These
results were obtained in collaboration with J. Hartinger, M. Predota, and R. Tichy.

All theoretical results in this work are accompanied by numerical examples, where it will
become clear that Quasi-Monte Carlo methods are superior to other methods in most cases.
We will also compare some popular low-discrepancy sequences, the Halton, Sobol and Faure
sequences, as well as Niederreiter’s (¢, s)-nets. In some cases we will see that there is hardly
any difference in their performance, while in other cases their results differ considerably (but
perform still better then crude Monte Carlo methods).

All parts of this thesis were submitted for publication in mathematical journals, most of them
are already published.

Graz, April 2003 Reinhold Kainhofer



Chapter 2

Quasi-Monte Carlo methods

Contents

2.1 Monte Carlomethods . . . . .. .. ... ... 0.,
2.2 Quasi-Monte Carlo integration . . ... ... ............
2.2.1 DiSCrepancy . . . .« v v vt it e e e e e e e e e e e e e
2.2.2 Error bounds: Koksma-Hlawka’s inequality . . . ... ... ... ..

S ot ot U

2.2.3 Low-discrepancy point sets and sequences . . . . . ... .. ... ..

In this chapter I will quickly lay out the notations as well as several basic facts about Quasi-
Monte Carlo methods and low-discrepancy sequences, which will be applied in the rest of this
work. This short introduction is not meant to be a comprehensive survey of this area at the
intersection of number theory and numerical mathematics, but rather to provide the reader
with those facts that are necessary for the further treatment in the remaining chapters.
Often, Quasi-Monte Carlo (or QMC in short) methods are referred to as deterministic versions
of Monte Carlo schemes. The use of deterministic uniformly distributed point sequences in-
stead of pseudo-random sequences in crude Monte Carlo has proven to be an efficient extension
of the classical Monte Carlo method.

I will particularly deal with problems, where the desired quantity can be expressed as an
integral, or the solution of an integral equation. In all these cases, the numerical evaluation
of the integral through Quasi-Monte Carlo methods will turn out to be beneficial compared
to conventional as well as Monte Carlo methods.

2.1 Monte Carlo methods

In Monte Carlo integration, the idea is to approximate the integral (possibly after a transfor-
mation to the desired unit interval) as the arithmetic mean of a number N of sample points
X, €10,1]°, 1 <n < N:

1 N
/W o= 3 1)

In contrast to conventional integration techniques, the nodes x,, are chosen randomly in the
unit interval, and the quality of the estimator obtained by this technique depends heavily on
the quality of the random number generator. The most important advantage of Monte Carlo
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methods over conventional techniques is the (stochastic) error bound of O <\/_1N>’ which does
not depend on the dimension of the integration problem. Thus the "curse of dimensionality"
in conventional methods, where the number of nodes grows exponentially with the dimension,
is removed in Monte Carlo methods. Drawbacks of this method are, however, the stochastic
error bound, and the fact that a Monte Carlo result cannot be exactly (due to the use of
random numbers).

2.2 Quasi-Monte Carlo integration

If one can improve the integration error by using random but well distributed sample nodes,
shouldn’t it be possible to obtain even better results by using specifically chosen sequences,
which are as uniformly distributed as possible? Or in other words, is the randomness of the
nodes in Monte Carlo methods really needed, and aren’t the distribution properties of the
sequence the important factor in this techniques?

This line of thought leads to the Quasi-Monte Carlo approach, where the random sequences
are replaced by deterministic sequences, which exhibit very good distribution properties. Typ-
ically, these are net-like constructions.

2.2.1 Discrepancy

A well-known measure for the uniformness of the distribution of a sequence {x,},.,<y in
U® :=10,1)° is the star-discrepancy

Dy (x,,) = sup 7A(Xn;l)

— (D], 2.1
sup | = - ) (21)

where J§ is the set of all intervals of the form [0,%) = [0,y1) x [0,y2) X ... X [0,ys) with
0<y;<1,i=1,...,s and A(xy,; ) is the number of points of the sequence {x;,},.,  that
liein I. As(I) denotes the s-dimensional Lebesgue-measure of I. o

The star discrepancy just describes the maximum error one can get if we calculate the volume
of an arbitrary interval containing the origin. Another widely used discrepancy is the total
discrepancy Dy (X,,), where the maximum in (2.1) is extended over all subintervals of [0, 1]°.
Clearly, these two discrepancy types are connected by the inequality

Dy(xn) < Dn(xn) < 2°Dy(xn) -

To measure the distribution properties of a given sequence with respect to measures other
than the uniform distribution, this definition of discrepancy can be generalized in a straight-
forward way. This will be done in Chapter 7, where we will take a look at QMC integration
with respect to arbitrary measures.

2.2.2 Error bounds: Koksma-Hlawka’s inequality

The notion of discrepancy is particularly useful for obtaining an upper bound for the error of
quasi-Monte Carlo integration:
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Lemma 2.1 (Koksma-Hlawka Inequality). Let the function f :[0,1)°* — R be of bounded
variation Vig 1ys(f) in the sense of Hardy and Krause. Then for any point set {x1,...,2n} C
[0,1)°

<V([0,1)%, f)D% (z1,...,xN) . (2.2)

1 N
PR RO

[0,1)®

For a proof of this famous inequality we refer to [24] and [51]. This error bound is deterministic
(opposed to error bounds obtainable for crude Monte Carlo). Especially for s not too large,
certain Quasi-Monte Carlo sequences have turned out to be superior to pseudo-Monte Carlo
sequences in many applications.

Again, this inequality can easily be generalized to arbitrary densities (e.g. in [70] for general
distributions H, but using a slight restriction to variation in the measure sense), and it will be
the basis for the convergence theorem of QMC integration of singular integrands in Chapter 7.

2.2.3 Low-discrepancy point sets and sequences

This is in particular the case for so-called low discrepancy sequences, i.e. sequences for which

(log N)*

Dy (z1,...,zn) < C N

(2.3)

with an explicitly computable constant Cy, holds. It is conjectured, but not yet proven, that
the order of this bound in N is best possible. Bounds for C, are usually pessimistic and
often the actual error made by Quasi-Monte Carlo integration is much lower than the bound
implied by C;s (see e.g. [16]). The dependence on s of the constant C varies for the known
bounds, and for a detailed investigation of the dependence of multi-dimensional integration
on s we refer to [54].

Some low discrepancy sequences will be given in the sequel:

e The Halton sequence [35] is defined as a sequence of vectors in U® based on the digit
representation of n in base p;

§n = (bpl (’I’L), bp2 (n)7 AR bps (’I’L)), (2'4)

where the p; are pair-wise coprime nubmers and b,(n) is the digit reversal function for

o.0] o
—k—1 k
=> mp L n=> mp”
k=0 k=0

where the ny, are integers. Halton [35] showed a discrepancy bound of

pit+1
D — In N
n(8) < +NH<2lnp, + 2 >

for the Halton sequence S in pairwise co-prime bases p1,...,ps > 2. According to this

base p given by

bound, the smallest discrepancy is obtained by using the first s prime numbers.

Better error bounds can be obtained for low-discrepancy sequences based on so-called (¢, m, s)-
nets or nets for short. These nets are based on the b-adic representation of vectors in U®.
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Instead of optimizing the discrepancy itself, one considers the discrepancy with respect to
elementary intervals .J in base b only, i.e. J = [[;_,[a;b=%, (a; + 1)b~%) with integers d; > 0
and integers 0 < a; < b% for 1 < i < s, and tries to construct point sequences in U® such
that the discrepancy with respect to these intervals J is optimal for subsequences of length
N =bpm.

Let #(J, N) denote the number of points of a sequence {x,},., <, that lie in J. A point set
P with card(P) = b™ is now called a (¢, m, s)-net, if o

#(J, ™) = b

for every elementary interval J with \s(J) = b*~™. The parameter ¢ is a quality parameter.
For ¢t = 0 we have the minimal discrepancy of the point set P with respect to the family of
elementary intervals.

Definition: Let ¢ > 0 be an integer. A sequence &1,&s,... of points in U? is called a (¢, s)-
sequence in base b, if for all integers £ > 0 and m > ¢, the point set consisting of the &, with
Eb™ <n < (k+1)b™is a (t,m, s)-net in base b.

The discrepancy of the (t, s)-sequence is minimal for ¢ being as small as possible, but unfor-
tunately, (0, s)-nets do not exist for all bases b. See for example [53] for lower bounds of ¢ for
given pairs (s, b).

Examples of (¢, m, s)-nets are

e Sobol sequences are (t, s)-sequences in base 2 with values for ¢ that depend on s. They
were initially proposed by Sobol [63], but other choices for the direction numbers used
in the construction have also been proposed (e.g. [57] for the application of a high-
dimensional Sobol sequence).

o Faure sequences [26] are (0, s)-sequences in a base b which is the smallest prime number
fulfilling b > s. The s-dimensional Faure sequence is defined by

{¢b(n)7 P(¢b(n))7 s ﬂPs*l(gbb(n))}

where the function P is defined for a b-adic rational = € [0,1] with expansion z =
>0 z;b777 as P(z) = Z;’;Og(mj)b*ﬁl with §(z5) =3 ;55 (;)xl mod b.

e Niederreiter sequences [53] are a generalization of Sobol’s and Faure’s sequences and
yield general (¢, s)-sequences for arbitrary bases p with the restrictions on ¢ mentioned
above. Among them there are (0, s)-sequences in prime power bases b > s. In particular,
for Niederreiter sequences the constant C in (2.3) tends to zero for s — oo.

For various different constructions see [53].
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Chapter 3

Risk theory with a non-linear
dividend barrier
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In the framework of classical risk theory we investigate a surplus process in the presence of
a non-linear dividend barrier and derive equations for two characteristics of such a process,
the probability of survival and the expected sum of discounted dividend payments. Number-
theoretic solution techniques are developed for approximating these quantities and numerical
illustrations are given for exponential claim sizes and a parabolic dividend barrier.

This chapter is based on a joint work [2] with H. Albrecher.

3.1 Introduction

Let us consider the classical risk process Ry = u + ¢t — Zﬁ\;(f) X;, where c is a constant

premium intensity, N (¢) denotes a homogeneous Poisson process with intensity A which counts
the claims up to time ¢ and the claim amounts X; are iid random variables with distribution
function F'(y). In this context R; represents the surplus of an insurance portfolio at time ¢
(for an introduction to classical risk theory see for instance GERBER [29] and THORIN [67] or
more recently ASMUSSEN [8]). As usual we assume 1 = E(X;) < oo and ¢ > A [T ydF(y). A
reasonable modification of this model is the introduction of a dividend barrier by, i.e. whenever
the surplus R; reaches b;, dividends are paid out to the shareholders with intensity ¢ — db;
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and the surplus remains on the barrier, until the next claim occurs. This means that the risk
process develops according to

dR; = cdt—dS; if Ry <b (31)

dR; = dbi—dS; if R;=b, (3.2)
where we have used the abbreviation S; = Zi]i(f) X;. Together with the initial capital Ry =
u, 0 <u < by < oo, this determines the risk process {R;, t > 0} (cf. Figure 3.1).

A
reserveR, dividends .~ dividend barrier b,

claims ~ F(y)
/ —— premiums=ct

u ruin
/ =t

time

Figure 3.1: A typical sample path of R,

Two quantities of particular interest in this context are the probability of survival ¢(u,b) =
Pr(R; > 0Vt > 0|Ry = u,bp = b) (or alternatively the probability of ruin ¥ (u,b) =
1 — ¢(u, b)) and the expected sum of discounted dividend payments W (u, b).

Dividend barrier models have a long history in risk theory (see e.g. [19, 15, 29]). For a survey
on the relation between dividend payments and tax regulations we refer to |7, 10].

GERBER [28] showed that barrier dividends constitute a complete family of Pareto-optimal
dividends. In the case of a horizontal dividend barrier by = b, =const., it is easy to see that
d(u,b) =0V 0 <u <b. SEGERDAHL [61] used the technique of integro-differential equations
to derive the characteristic function of the time to ruin in the presence of a horizontal dividend
barrier for exponentially distributed claims. This approach was generalized by GERBER AND
SHIU [31]. PAULSEN AND GJESSING [58] calculated the optimal value of b. that maximizes the
expected value of the discounted dividend payments in an economic environment. Recently
IRBACK [44] developed an asymptotic theory for a high horizontal dividend barrier.

If one allows for monotonically increasing b; in the model, a positive probability of survival
can be achieved. The case of linear dividend barriers is fairly well understood: GERBER [27]
derived an upper bound for the probability of ruin for b; = b+at by martingale methods and in
[30] he obtained exact solutions for the probability of ruin and the expected sum of discounted
dividend payments W (u,b) in terms of infinite series in the case of exponentially distributed
claim amounts. This result was generalized to arbitrary Erlang claim amount distributions in
SIEGL AND TICHY [62] by developing a suitable solution algorithm. The convergence of this
algorithm was proved by ALBRECHER AND TICHY [5].
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Apart from mathematical simplicity there is no compelling reason to restrict the model to
linear dividend barriers. Moreover, simulations indicate that by choosing an appropriate div-
idend barrier, the expected value of discounted dividend payments W (u,b) can be increased,
while the probability of survival ¢(u,b) stays constant (cf. ALEGRE ET AL. [6]).

In this chapter non-linear dividend barrier models are investigated. In Section 3.2 we derive
integro-differential equations for ¢(u,b) and W (u,b) and discuss the existence and uniqueness
of the corresponding solutions. Our main focus is on the development of efficient numerical
algorithms to obtain those quantities. More precisely, we adapt number-theoretic solution
methods in the spirit of [68] to the current situation (Section 3.3). Finally Section 3.4 gives
numerical results for the special case of a parabolic dividend barrier and exponential claim
amount distributions.

3.2 The model

Model A: We consider a classical risk process extended by a dividend barrier of type
t 1/m
bt:<bm+—> (a,b>0,m > 1).
e

Note that m = 1 corresponds to the linear barrier case.
The probability of survival ¢(u,b) can then be expressed as a boundary value problem in the
following way: Conditioning on the occurrence of the first claim, we get for u < b

dt\ Y™
d(u,b) = (1 — Adt)o (u + cdt, (bm + E) ) n

u4-cdt dt 1/m
+)\dt/ ¢l u+cdt—z, <bm+—> dF(z). (3.3)
0 (6%

Taylor series expansion of the functions ¢ on the right-hand side of (3.3) and division by dt
shows that ¢ satisfies the equation

o¢p 1 o¢p / U

S S | A —2,b)dF(z) =0, 3.4
which, for reasons of continuity, is valid for 0 < u < b. For u = b we get along the same line
of arguments

d(u,b) = (1 — Adt)¢ <<bm n %)1/’”’ (bm ) %>1/m> N

bm+% 1/m 1/m 1/m
+ )\dt/( ) é ((bm + %) e <bm + %) > dF(z), (3.5)
0

from which it follows that
1 foler 1 foler

amb™1 gy ' ambm-1 9b

—A¢+/\/Ou¢(u—z,b)dF(z) =0. (3.6)

Comparing (3.4) and (3.6) we thus obtain the boundary condition

29

| =0 (3.7)

u=>b
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A further natural requirement is

lim ¢(u,b) = ¢(u), (3.8)

b—oo

where ¢(u) is the probability of survival in absence of the barrier.

Contrary to ruin, the crossing of the dividend barrier is a much desired event. For equal
slopes of the barrier at time 0, the expected time until the first crossing of the dividend
barrier will be considerably less for sub-linear barriers as introduced above than for the linear
case. A quantitative result in this direction follows from BOOGAERT ET AL. [12] who used a
martingale technique to derive upper bounds for the probability Pr(D > t) that the surplus
process does not reach a given barrier before time ¢. Adapting these results to our situation,

we obtain
At

u—(bm+t/a)

Pr(D >t) <
Um 4 et

for all ¢ that satisfy u + ct > (0™ + t/a)'/™.
Let furthermore W (u,b) denote the expected present value of the future dividend payments,

which are discounted with a constant intensity d, and stop when ruin occurs. Then, in a
similar way to (3.3) and (3.5), one can derive the integro-differential equation

—(0+A — 2,b)dF(z) = '
¢ ou + ambm=1 9b O+N)W + )‘/0 W(u— z,b)dF(z) = 0, (3.9)
with boundary condition

ow

u =1 1

In the actuarial literature [27, 69] there has been some interest in models where dividends can
also be paid after a ruin event (this makes sense since ruin of a portfolio is a technical term
used in decision making and does not necessarily imply bankruptcy). If we allow for dividend
payments after ruin in our model, then along the same line of arguments as above, we obtain
the following equation for the expected value V'(u,b) of the discounted dividend payments

ov 1 ov o
—+—— — -0+ NV + A V(u—2,b)dF(z) =0 A1
cau+ambm—1 %% 0+NV+ /0 (u—2,b)dF(2) , (3.11)
and the initial condition %—Z = 1. Note that for a linear dividend barrier the corresponding

=b
integro-differential equation Was much simpler, because V' could be expressed as a function of

one variable only (cf. [69]); for a non-linear barrier this is no longer the case.

Model B: In addition to Model A, we will also consider a “finite-horizon” version of the
model, namely we introduce an absorbing upper barrier b,,,, = const. If the surplus process
R; > by for some t > 0, it is absorbed and the company is considered to have survived. From
an economic point of view this can be interpreted that the company will then decide to pursue
other forms of investment strategies. Mathematically, this model has some nice features (e.g.
the process stops in finite time with probability 1). The boundary value problem for the
probability of survival can now be formulated by (3.4), (3.7) and

¢(u)

(b(uybmax) = M7

(3.12)
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where 0 < u < b < by, and as before ¢(u) is the probability of survival in absence of the

barrier.

Example: For exponentially distributed claim amounts (F(z) = 1 — e~ %), equation (3.4) can
be expressed as a hyperbolic partial differential equation with variable coefficients

¢ 1 ¢ D¢ 1 99
‘D T ampnT 8b8u+(c_/\)%+ambm_1 %_0 (3.13)
and with boundary conditions (3.7) and
D¢ 1 D¢
ksl - _ =0. .14
<03u+ambm_1 b )\(b) S 0 (3:-14)
Since ¢o(u,b) = =" ") is a solution of (3.13), where r(s) satisfies
cr2+(s/a+)\—c>r—s/a:(), (3.15)

one can try to obtain a solution of the form

¢(u, b) _ / efsbmAl(s)efrl(S)u ds +/ efsbmAz(s)efm(S)u ds + ¢(u),
0 0

where 71(s), ra(s) are the solutions of (3.15) and the A;(s) have to be determined according
to (3.7) and (3.14). However, this turns out to be an intricate problem.

Similarly, the integro-differential equations for W (u, b) and V' (u, b) can be expressed as second-
order PDE’s in the case of exponentially distributed claims.

3.3 Solution techniques

The above example shows that even for the simple case of exponentially distributed claim
amounts it is a delicate problem to obtain analytical solutions. Thus there is a need for
effective algorithms to obtain numerical solutions to these problems. Here we focus on the
development of number-theoretic solution methods.

Following a procedure developed by GERBER [30] for the case of linear barriers, we first show
that the boundary value problem (3.9) together with (3.10) has a unique bounded solution.
For that purpose, we define an operator A by

t* u+ct ¢ 1/m
Ag(u,b) = /0 )\e_()‘+6)t/0 glu+ct—z, <bm + —> dF(z)dt+

(07

- (beré)l/m ¢ 1/m + 1/m
L[ ae o / g <bm + —) -z, (bm + —) dF(z)di+
t* 0 @ @

o] t 1
+ )xe)‘t/ e % | c— T Tm ds dt. (3.16)
o a7+ 2)

Here t* is the positive solution of u+ct = (bm + %)l/m (since m > 1, by is concave and u < b,

so this number is unique). Note that (3.16) can be interpreted as a conditioning on whether
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a claim occurs before the surplus process hits the dividend barrier (¢t < t*) or after this event
(in which case we have an additional term representing the discounted dividends paid until
the claim occurs). The solution W (u,b) of (3.9) with its initial condition (3.10) is a fixed
point of the integral operator A. For any two bounded functions g1, go

<L A
[Aga(,8) = Ao D) < o1 = el [ A O < s - gl (317)
0

for arbitrary 0 < u < b < oo, where ||-||, is the supremum norm on 0 < u < b < oo, and thus
it follows that A is a contraction and the fixed point is unique by Banach’s theorem.

Proceeding in the same way as for W (u,b) above, one can easily show that equation (3.11)
together with its initial condition has a unique bounded solution.

In the case of Model B we can proceed in a similar way to obtain a contraction map for the
probability of survival as its fixed point: Like in equation (3.16), let t* be the time when
the surplus would reach the dividend barrier given that no claim occurs. Let furthermore

£ = (b

mw — 0") be the time when the dividend barrier reaches the absorbing barrier, and

t = (byas — u)/c the time when the surplus would reach the absorbing barrier in the absence
of a dividend barrier and of claims. As the dividend barrier is an increasing function on R,
t** is uniquely determined, just as is £. Combining the two possible scenarios 0 < t** < t < t*
and 0 < t* <t < t** (depending on the values of u and b), we define the operator A as

T Zmin (U,b,t) %
A¢(u,b) = / )\e_)‘t/ 0] (zmm(u, b,t) — z, <bm + E> ) dF(z) dt+e | (3.18)
0 0

(07

where T" = max (f, t**) is the time when the surplus process would reach the absorbing upper

barrier by, and

(0%

1
t\ m
Zmin (U, b, t) = min <u + ct, <bm + —> ) . (3.19)

Let ¢1 and ¢ now be two bounded functions on 0 < u < b < bypaz, then

T
A1 (u,b) = Ada(u,b)] < [lg1 = 2/l /0 ANt = |61 = g (1- €T .

Since T' = T'(u,b) < M < oo, this operator is a contraction, and Banach’s fixed point theorem
establishes the existence and uniqueness of the solution. Here, the absorbing barrier and the
resulting restriction to the finite area 0 < u < b < b4, ensures that the solution is unique in
contrast to the case without the absorbing barrier.

Correspondingly, the contraction map for the expected sum of dividend payments in Model
B is given by

t* u+ct " 1/m
Ag(u,b) = / )\e_()‘+5)t/ glu+ct—z, <bm + —> dF (z)dt+
0 0 «
£ (b)Y £\ 1/m £\ U/m
+ A~ (ATt / g (bm + —> — 2z, (bm + —) dF (2)dt+
t* 0 a a

* %k
t 1

+ / e Ot [ dt, (3.20)
t* ma (b™ + é)l_l/m
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if t** > t* and Ag(u,b) = 0 otherwise, because then the surplus reaches the absorbing barrier
before the dividend barrier. The last term in (3.20) represents the dividends that are paid
out until ¢** and is a simplification of the original expression

$H*

¢ 1
)\e_M/ e - 1m ds dt+

00 t** 1
/ )\eAt/ e | e— 17 ds dt.
s t* mao (bm + %) m

A
<
T A4S

From (3.20) it follows that

|Agi (s, ) = Aga(u, b)| (1= Y gy — gl

for any two bounded functions g1, ¢> and we again have a contraction in the Banach space
of bounded functions equipped with the supremum norm, which implies the existence and
uniqueness of the solution.

The following algorithms are now efficient ways of approximating the corresponding fixed
point:

3.3.1 Double-recursive algorithm

This procedure will be described for the operator (3.16); it can easily be adapted to the
other integral operators introduced above. Moreover we will restrict ourselves to the case of
exponentially distributed claim amounts (with parameter «); the extension of the method to
other distributions is straightforward.

The fixed point of (3.16) can be approximated by applying the contracting integral operator
A k times to a starting function h(u,b) which we choose to be the inhomogeneous term in the
corresponding integral operator (where k is chosen according to the desired accuracy of the
solution):

9" (u,b) = A¥gO) (u, b),

00 t 1
9O (u,b) = h(u,b) := )\eAt/ e | e— — | ds dt.
t* t* mao (

b+ 5)

This leads to a 2k-dimensional integral for g(*) (u,b), which is calculated numerically using
Monte Carlo and Quasi-Monte Carlo methods. For that purpose we transform the integration
domain of operator (3.16) into the unit cube:

Ag(u,b) = h(u,b)+
A
+ -

1 1 1
. t\ ™
= (A0t _ m ‘1 o —y(u+tctr)
T35 (1 e )//g<u+ct1 z1,<b +04> )(1 e )dvldwl
0 0
11 " 1 " 1 1
« m m m, t m
e //g ((bm + —2> — 29, <bm + —2> ) . <1 — e (0 E) > dvgdw2]
« «
0 0
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with
= — (= (- )) z7 = _ log (1 =y (1= elutet))) (3.21)
A+0 .
. log(1l —wy) log (1 — vy <1 _ efy(bm+2)%>>
=t =~ =g 2= — : e

The Monte Carlo-estimator of W (u,b) for given values of u and b is

N
1
~ 5 2o wb) (3.23)
n=1

where the gﬁlk) (u, b) are calculated recursively for each n by

97(10) (uv b) = h(u, b)

and

; A
(4) - A
o (,) = h(u,b) + 1

i i m

1
t4 m , , 1
—y bm+ 2(;") ) ) tl ) tl m
+ (1 o )e—wﬁ 4 (bm+ —) = (b’“ =)t

Here t;n and z;n (j = 1,2) are determined according to (3.21) and (3.22) for (quasi-)random

3=

deviates v;,w; of the uniform distribution in the unit interval (1 < <k).

Since in every recursion step the function ¢ is called twice, the number of evaluations of g
doubles in every recursion step. Thus, in order to keep the computations tractable, in what
we will call the double-recursive algorithm in the sequel, the double recursion is only used
for the first two recursive steps and for the remaining recursion steps the recursive algorithm
described in Section 3.3.2 is applied.

3.3.2 Recursive algorithm

Instead of calculating the first two integrals occurring in operator (3.16) separately, one can
combine them to one integral. A suitable change of variables then leads to

Ag(u,b) = h(u,b)+

1
t\m
_ 'Yzmzn(Ubt) i _ m -
//)\—1-5 1 e >g<zmm(u,b,t) z, <b —|—a> )dvdw (3.24)

where ¢ and z are given by
log(1 —w)
(A+9)
log (1 — v (1 — e~ 7#min(wb0)))
Y

(3.25)

z=—
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and 2zpyin(u,b,t) is determined by (3.19). Like in the double recursive case, this integral
operator is now applied k times onto ¢'?), and the resulting multidimensional integral ¢(*) (u,b)
is again approximated by

N
1
(k) ~ (k) 2
g™ (u.b) & nzlgn (u,0), (3.26)
where each g,(f) (u,b) (n =1,...,N) is based on a pseudo-random (or quasi-random, resp.)

point x,, € [0,1]%* and calculated by the recursion

g]({;O) (uv b) = h(“? b)?

Y
7(3) (u, b) = m (1 — 6_’yme(u7b7tn)> 9:1_1 (Zmin(ua b7 t;) — ZZL’ (bm + En> ) + h(U7 b)a
with 1 < 4 < k. % and 2! are given by (3.25) with v and w being the value of the 2i-
th and 2¢ + 1-th, component of x,,, respectively. Note that for this algorithm, the number
of integration points needed for a given recursion depth is one fourth of the corresponding

number required for the double-recursive case.

3.3.3 Simulation

Since there are no analytical solutions available for the above problems, we need simulation
estimates of the ruin probabilities and discounted dividend payments to compare them to the
results of the integration methods that were described in the last sections.

We sample N paths of the risk reserve process in the following way: Starting with ¢g := 0,
by := b and xg := u, where u is the initial reserve of the insurance company, we first generate
an exponentially distributed random variable #; with parameter A for the time until the next
claim occurs and set ¢, = t; + t;. The claim amount is sampled from an exponentially
distributed random variable z; (with parameter «y), and the reserve after the claim is z;1 :=
min{x; + ct;, (" +£;/a)/™} — z;. Due to the structure of the dividend barrier, we can reset

-\ 1/m
the origin to t;41 in every step, if we also set by = (b7 + 4 . We then have to discount
g + Yy P, + i o

the dividend payments between the i-th and (i 4+ 1)-th claims by the factor e~%%.

A simulation estimate for the survival probability ¢(u,b) can now be obtained by

m

¢(u7 b) ~ N7

where m is the number of paths for which ruin does not occur (i.e. z; > 0V 7). We consider
a path as having survived, if for some ¢ the condition x; > T4, is fulfilled, where x4, is a
sufficiently large threshold. This can be viewed as an absorbing horizontal barrier at Z;qz,
and so the process stops with probability 1. Using this stopping criterion, we overestimate

the actual probability of survival ¢(u,b); for sufficiently large x4, however, this effect is
negligible.

For the simulation of the expected value of the dividend payments, we proceed as described
above and whenever the process reaches the dividend barrier, i.e. x; + ct; > (b + ¢;/ a)%,
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we need to calculate the amount of dividends that are paid until the next claim 7 occurs:

ti 1
v; = 01 + e 0t / e e— ds, 1>1
t* mao (b + £)

)1/m i.e. the time when the

and vo = 0, where ¢* is the positive solution of z; + ct = (b +
process reaches the dividend barrier. The process is stopped, if ruin occurs (i.e. z; < 0 for
some i) or at some sufficiently large time ¢4, after which the expected value of discounted
dividends becomes negligible due to the discount factor e=®. Let v(j) now be the final value
of v; for path j. The expected value of the dividends is then approximated by

1
EW N;U

3.3.4 Quasi-Monte Carlo approach

Following a technique developed in [68|, we can now use the Koksma-Hlawka inequality (2.1)
to find an upper bound for the error of the recursive algorithm estimate introduced in Section
3.3.2 in terms of the discrepancy of the sequence used:

Theorem 3.1. If the expected value W (u,b) of the discounted dividends is approzimated by
g (u,b) as given in (3.23) using a sequence w of N elements, the error is bounded by

< 12w, b)]lo

00 1—gq

W) - @) < (" +aDx(w)) (3.27)

with q := )\L_M'

Proof. Since we have g(9 (u, b) = h(u, b), it follows from Banach’s fixed point theorem together
with the estimate (3.17), that

HW(u,b) — g™ (u, b)Hoo < HW(U, b) — A*h(u, b>Hoo + HAkh(u, b) — ¢ (u, b)H

k
< T b) o+ [ AR b) g )| (3.25)
Iterating the integral equation (3.24) k times leads to
k i—1
Akh uo, bo Z/ H qu h(ui, bi)dvi_ldwi_l PN dvod’u}o + h(uo, bo) (3.29&)

=1 [0 1]21 Jj=0

k i—1
/ /Z T Cia | hlus, bs)dve—rdwy,_y . .. dvodwo + h(ug, bo) ~ (3.29b)
]2k i=1 7=0
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where for 0 < j < k — 1 we have
1
tj = —Xlog(l —wj),

zj = 1 log (1 — v <1 — e_“/z*”i”(“f’bj’tf))) )
Y

1
ti\m™
me(uj‘, bj,tj) = cut; := min (u]' + ctj, (b;n + é) ) R

C= (1),

Uj+1 = Cut]’ — Zj,

(3.30)

1

AN
bjy1 = <bj + E) .

In our recursive algorithm the 2k-dimensional integral (3.29b) is approximated by quasi-
Monte Carlo integration and in order to use Koksma-Hlawka’s inequality for bounding the
error, we have to determine the total variation of the integrand in (3.29b). For that purpose
we investigate each of the summands separately and define F; to be the integrand of the i-th
term in (3.29a):

i—1
FZ'(U(), WO,y vy Vi—1, wi,l) = qi H (1 — eifyZMi"(uj’bj’tj)) h(ul, bl) (331)
j=0

We now show that this function is increasing in all the variables w; and decreasing in all the
variables v; (j =1,..,i —1):

Choose a j € {1,..,i—1} and let v; be increasing (while all the other variables are fixed), then
Cp, ug, and tg remain constant for all £ < j. Furthermore z; remains constant for all k < j
and so does by, for arbitrary k. But then it is easy to see that wj1 and zmin (w1, 041,t541)
are decreasing. By induction and some elementary monotonicity investigations it follows that
Witk and Zpmin (Ujtk, bj4+k, tj1k) are decreasing for all £ > 1. But since h(u, b) is an increasing
function of u it follows from (3.31) that F; is a decreasing function of v; (j = 1,..,7 — 1).
Similarly it can be shown that F; is an increasing function of w; (j =1,..,7 — 1).

This monotone behavior now allows to bound the variation of Fj:

1% F) = F;(0,1,...,0,1) — F;(1,0...,1,0) <
VO P = B0, 0.~ R .10 < (125) Il

By summing up the variations of the F; we get an upper bound for the total variation of the
integrand F of (3.29b)

Vv ([0, 1] 2k, ) < h

( Z(AM) Il L

If we use this estimate together with Lemma 2.1 we get

| Ah(u) = @ ()| < )l 7Dy (w)
q
and inserting this into equation (3.28) finally gives
k
) “<JL_ 4 5 ”” D .
w8y =g b)| < 7 A Dl + bl T2 Dv(@) = T2 (¢* +aDw(w))

O
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3.4 Numerical results for the parabolic case

In this section numerical illustrations for a parabolic dividend barrier of the form b =
V/b? +t/a and exponentially distributed claim amounts (F(z) = 1 — e #) are presented.

Note that in this case
o 1 u 1 w\? N b2 — u?
202 ¢ 20c2 ¢ c2

and the inhomogeneous term h(u,b) in (3.16) can be calculated explicitly to

2
o) [ S T ¢
h(u,b) =e ()\—1—5 Otoa 2 erfc (z)

with 2 = /(A + 0)(ab? + t*) and thus we have ||h(u,b)|, < s

The parameters are set to ¢ = 1.5, § = 0.1, @« = 0.5, A = v = 1 and the absorbing upper
barrier in Model B is chosen at by.x = 4.

The MC and QMC estimators are obtained using N = 66 000 paths for the recursive case and
for the simulation and N = 33000 for the double-recursive calculations. The corresponding
"exact" value, in lack of an analytic solution, is obtained by a MC-simulation over 10 million
paths for each choice of u and b.

For the recursive and double recursive calculations we use a recursion depth of & = 66,
which leads to a 132-dimensional sequence needed for the MC- and QMC-calculations, while
for the simulation we take a 400-dimensional sequence so that 200 consecutive claims and
interoccurrence times of a risk reserve sample path can use the different dimensions of one
element of the sequence and correlations among the claim sizes and claim occurrence times

are avoided.

We use so-called hybrid Monte Carlo sequences for all our QMC-calculations, where the initial
50 dimensions are generated by a 50-dimensional low discrepancy sequence and the remaining
dimensions are generated by a pseudo-random number generator. Throughout this chapter,
we use ran2 as our pseudo-random number generator, which basically is an improved version
of a Minimal Standard generator based on a multiplicative congruential algorithm (for a
description we refer to [59]). The use of hybrid Monte Carlo sequences has proven to be a
successful modification of the QMC-technique, since for low discrepancy sequences typically
the number of points needed to obtain a satisfying degree of uniformness dramatically increases
with the number of dimensions.

The different methods and sequences used are compared via the mean square error

5 - %( > (otwt) - gu)’,

u,b)eP

where g(u,b) and g(u,b) denote the exact and the approximated value, respectively, and the
set P is a grid in the triangular region (b = 0..[0.1]..1,u = 0..[0.1]..b). In addition, for each
method we give the maximal deviation of the approximated value from the corresponding
exact value [|A[l, = max(,pep (g(u, b) — g(u, b))
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3.4.1 Survival probability

In Model A the survival probability can only be calculated using the simulation approach.
Table 3.1 gives the mean-square and the maximal error of the simulation results (together
with the corresponding calculation time in seconds) for each of the sequences used (with
N = 66 000):

Monte Carlo Halton Niederr. (t,s) Sobol

Simulation S 0.001307 0.001798  0.001706 0.0009
|A|l | 0.003741 0.003619  0.003472 0.002451

(163.16s)  (149.58s) (281.61 s) (150.09 s)

Table 3.1: Simulation errors for the survival probability in Model A

Figure 3.2 shows a log-log-plot of the mean square error S as a function of N. To quantify
the effect of using a low discrepancy sequence, we perform a regression analysis by fitting

logy(S) = ag + a1 logy(N) + azlogy(logy(N)) + ¢

to the data using a least square fit. Note that Koksma-Hlawka’s inequality (2.1) could be
interpreted as implying a; = —1 and ag = s, where s is the dimension of the sequence used.
However, since we use a hybrid sequence and since the effective dimension may differ from
the theoretical dimension, the values of a; and as deviate from the ones above. Figure 3.3
gives these fitted curves. In the sequel all figures on simulation results will be given in terms
of their regression fits.

In Model B approximate solutions for the survival probability can be obtained by the re-
cursive method using the operator (3.18) and by simulation. The numerical errors and the
corresponding calculation time are given in Table 3.3 and the fitted curves for the mean square
error are depicted in Figure 3.4.

Monte Carlo Halton  Niederr. (t,s) Sobol
Simulation S 0.001796 0.000676 0.001621 0.00062
1Al | 0.004066 0.001813  0.002529 0.001217
(99.71 s) (86.925) (87.21 5) (86.91 s)
Recursive S 0.000934 0.000155 0.000168 0.000128
|All | 0.002504 0.000365 0.000392 0.000317
(386.445)  (374.3s) (374.45) (374.21 s)

Table 3.3: Errors for the survival probability in Model B

Figure 3.4 shows that while the recursive Monte Carlo method is favorable to the Monte
Carlo simulation, for larger values of IV the simulation technique using the Halton and the
Sobol sequence, respectively, gives even better results. However, the best results in terms of
convergence rate of the error are obtained for the recursive method using Quasi-Monte Carlo
sequences. To quantify this effect, we introduce the efficiency gain

Nye(5)

N7 (S)

gain; =
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Figure 3.2: Mean square error of the simulated survival probability in Model A

Log,(S)
‘ : Log,(N)
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B T ——— Halton
6! S
gl TR Niederr. (t,s)
~10 R Sobol
Figure 3.3: Fits of the simulated survival probability in Model A
b\z | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 10.28
0.1 10.28 10.75
0.2 10.32  10.77 11.19
0.3 | 1040 10.86 11.27 11.63
0.4 10.51 1099 1142 11.75 12.04
0.5 10.62 11.12 11.56 11.94 12.24 12.44
0.6 10.78 11.28 11.74 12.16 1248 12.75 12.90
0.7 10.94 11.48 1197 1237 12.74 13.01 13.25 13.35
0.8 11.13 11.69 1219 12.65 13.02 13.34 13.60 13.79 13.86
0.9 11.33 11.91 1244 1291 13.31 13.67 13.95 14.22 14.37 14.43
1.0 11.54 12.14 12.68 13.18 13.60 14.02 14.35 14.62 14.83 14.97 15.01

Table 3.2: Exact values of the survival probability in % in Model A



Chapter 3. Risk theory with a non-linear dividend barrier 23

where Ny (S) is the number of paths needed in the Monte Carlo simulation to reach a given
error of S, and N;(S) is the corresponding number of paths (the number of summands in
approximations (3.23) and (3.26), respectively) using an alternative method. Figure 3.5 shows
that except for the (0, s)-nets all methods are an improvement in efficiency compared to Monte

Carlo simulation, and the gain increases with smaller errors.

3.4.2 Expected value of the dividend payments

The exact values of W (u,b) in Models A and B are given in Tables 3.5 and 3.6, respectively.
The numerical results given in Table 3.7 and Figures 3.6 and 3.7 show that the performance of
the various solution techniques is similar to the case of survival probabilities. For a moderate
choice of N (N < 2'0) the Monte Carlo methods have a smaller mean square error than the
QMC simulation techniques; for larger IV, however, all Quasi-Monte Carlo methods outper-
form the Monte Carlo schemes, with the recursive algorithm giving better results than the
simulation. This is in particular relevant for practical purposes, since the generation of these
QMC-sequences can be done faster than the generation of pseudo-random numbers based on

ranl or ran2.

For the dividend payments in Model B the superiority of the Quasi-Monte Carlo approach is
even more pronounced (see Figures 3.8, 3.9 and Table 3.8).

Since for a fixed N the recursive numerical techniques need more calculation time than the
simulation approach, it is instructive to investigate the accuracy of the numerical results with
respect to calculation time. Figure 3.10 gives a log-log-plot of the mean-square error S as a
function of calculation time t for the dividend payments in Model B. It turns out that the
Quasi-Monte Carlo techniques clearly outperform the corresponding Monte Carlo techniques.
For smaller values of ¢ the Sobol sequence is particularly well-suited for our integrands, whereas
for large t the use of the Halton sequence seems preferable.
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Figure 3.4: Mean square error of the survival probability in Model B

gain
Sim.MC
77777 Sim.Halton
rrrrrrrrrr Sim.Niederr.
fffff Sim.Sobol
— Rec.MC
————— Rec.Halton
‘ ‘ ‘ ‘ Log,(S)
-7 -6 -5 -4 - 2
Figure 3.5: Gain for the survival probability in Model B
b\z | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 | 23.28
0.1 | 23.31 24.32
0.2 | 23.40 2444 2534
0.3 | 23.58 24.62 25.56 26.33
0.4 | 23.80 24.87 25.87 26.64 27.27
05 | 24.09 25.21 26.20 27.07 27.75 28.20
0.6 | 24.42 2556 26.64 27.54 28.29 28.86 29.22
0.7 | 24.80 26.02 27.10 28.05 28.90 29.54 30.01 30.28
0.8 | 25.22 26.50 27.64 28.65 29.50 30.26 30.84 31.27 31.45
09 | 25.68 27.00 28.17 29.24 30.20 31.00 31.69 3220 32.56 32.71
1.0 | 26.17 27.50 2875 29.90 30.88 31.76 32.52 33.14 33.61 33.93 34.07

Table 3.4: Ezxact values of the survival probability in % in Model B
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Figure 3.6: Mean square error of the expected dividend payments in Model A
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Figure 3.7: Gain for the expected dividend payments in Model A
b\z | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 | 1.482
0.1 | 1.482 1.592
0.2 | 1.481 1.591 1.701
0.3 | 1.480 1.590 1.699 1.808
0.4 | 1.478 1.588 1.700 1.806 1.913
0.5 | 1.476 1.586 1.696 1.805 1.912 2.014
0.6 | 1.474 1583 1.694 1.802 1.908 2.014 2.117
0.7 | 1.469 1.582 1.690 1.797 1.904 2.008 2.114 2.215
0.8 | 1.466 1.578 1.685 1.793 1.900 2.006 2.110 2.214 2.315
0.9 | 1.462 1.572 1.680 1.788 1.894 2.001 2.104 2.208 2.311 2.412
1.0 | 1.456 1.565 1.675 1.782 1.886 1.994 2.098 2.201 2.304 2407 2.506

Table 3.5: Exact values of the expected dividend payments in Model A
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Figure 3.9: Gain for the expected dividend payments in Model B
b\z | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 | 1.045
0.1 | 1.045 1.136
0.2 | 1.041 1.132 1.225
0.3 | 1.036 1.126 1.218 1.312
0.4 | 1.028 1.118 1.211 1.302 1.397
0.5 | 1.019 1.108 1.198 1.291 1.384 1.479
0.6 | 1.007 1.095 1.18 1.276 1.368 1.463 1.559
0.7 | 0.993 1.081 1.169 1.258 1.350 1.442 1.536 1.634
0.8 | 0977 1.064 1.151 1.239 1.328 1.420 1.513 1.608 1.706
0.9 | 0960 1.045 1.130 1.217 1.306 1.395 1.486 1.579 1.674 1.773
1.0 | 0.940 1.023 1.108 1.193 1.278 1.367 1.457 1.548 1.641 1.737 1.836

Table 3.6: Exact values of the expected dividend payments in Model B
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Monte Carlo Halton Niederr. (t,s) Sobol
Simulation S 0.007141 0.005095 0.006126 0.004136
|All, | 0.018727 0.010935 0.009418 0.006817
(163.16 s) (149.58 s)  (281.61 s) (150.09 s)
Recursive S 0.004046 0.000755 0.001083 0.000755
Al | 0.012431 0.001758 0.002598 0.001786
(507.3 s) (494.72 s)  (494.62 s) (495.04 s)
Double recursive S 0.004309 0.00078 0.000871 0.001054
Al | 0.008598 0.001811 0.002389 0.002432
(3914.71 s) (1761.22 s) (1761.44 s) (3910.15 s)
Table 3.7: Errors for the expected dividend payments in Model A
Monte Carlo Halton Niederr. (t,s) Sobol
Simulation S 0.004778 0.000855  0.001262 0.000958
|All | 0.010684 0.002495  0.002914 0.002464
(99.71 s) (86.92s) (87.21s) (86.91 s)
Recursive S 0.002134 0.000607  0.000479 0.000497
1Al | 0.005386 0.001762  0.001526 0.00161
(149.74 s) (136.98 s) (136.8 s) (136.7 s)
Double recursive S 0.002207 0.000709  0.000636 0.000721
|All | 0.005466 0.001953  0.001843 0.002008
(331.1 s) (325.63 s) (325.32 s) (324.69 s)

Table 3.8: Errors for the expected dividend payments in Model B
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Figure 3.10: Mean square error of the expected dividend payments in Model B, compared with respect

to calculation time
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In this chapter we consider a generalized version of the classical model for the collective
surplus process of an insurance portfolio. In the presence of dividend payments according
to a non-linear barrier strategy and interest on the free reserve we derive equations for the
probability of ruin and the expected present value of dividend payments which give rise to
several numerical number-theoretic solution techniques. For various claim size distributions
and a parabolic barrier numerical tests and comparisons of these techniques are performed.
In particular, the efficiency gain obtained by implementing low-discrepancy sequences instead
of pseudo-random sequences is investigated.

This chapter is an extension to the model presented in the previous chapter, and is based on
joint works [3, 4| with H. Albrecher and R. Tichy. The research on this topic was supported
in part also by the OeNB Project Nr. 9002.

4.1 Introduction

Let {N(t) : t € Ry} denote the random process that counts the claims of an insurance port-
folio of a company up to time ¢ and assume that N(¢) is a homogeneous Poisson process with

28
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intensity A. Let further {X,, : n € N} be a sequence of independent identically distributed
positive random variables with distribution function F'(y) representing the sizes of the suc-
cessive claims and let p = F(X;) < co. In a time interval [¢,t 4 dt] the company receives the
premium cdt, where ¢ > A fooo ydF(y). In addition to the premium income, we assume that
the company also receives interest on its reserves with a constant interest force ¢ (for i = 0 we
have the classical ruin model; for a general background in ruin theory see for instance GER-
BER [29], THORIN [67] or more recently DEVYLDER [71] and ASMUSSEN [8]). Let T,, (n € N)
denote the moment of occurrence of the nth claim. If we introduce the purely discontinuous
measure Xy, dN; which puts a weight equal to Xy, at times T,, (n € N), then the value of
the reserve at time ¢, denoted by Ry, satisfies

th :Cdt+Rt . ’idt—XNt dNt

(see for example DELBAEN AND HAEZENDONCK [20]).

We now extend this model by introducing a time-dependent dividend barrier b;, such that
whenever the value of the reserve R; reaches b;, dividends are paid out to the shareholders
with intensity (¢ + Ry - i) — db; and the surplus remains on the barrier, until the next claim
occurs. This means that the risk process develops according to

dR; = (C +1 Rt) dt — XNt dN; if Ry < by (41)
dR; = db; — Xy, ANy if Ry = b;.

Together with the initial capital Ry = v, 0 < u < by < 0o, this determines the risk process
{R¢, t > 0} (cf. Figure 4.1).

dividends .-

R -
reserve R, e dividend barrier b,

claims ~ F(y)
—— premiums

Figure 4.1: A sample path of R;

The following quantities are of particular interest in this context: The survival probability is
defined as the probability that the reserve of the portfolio never becomes negative, i.e.

¢(u,b) = Pr{R; > 0Vt > 0| Ry = u},



Chapter 4. Efficient simulation techniques for a generalized ruin model 30

where u > 0 denotes the initial reserve of the portfolio. Correspondingly the probability of
ruin is defined by ¥ (u,b) = 1 — ¢(u,b). Another important quantity is the expected sum of
discounted dividend payments W (u,b), i.e. the expected present value of all dividends paid

until ruin occurs.

Dividend barrier models have a long history in risk theory (see e.g. [15], [29]). GERBER [28]
showed that barrier dividends constitute a complete family of Pareto-optimal dividends. In
the case of a horizontal dividend barrier by = b. = const., we have ¢(u,b) =0V 0 < u < b.
Including a constant interest force on the reserve in the model, PAULSEN AND GJESSING
[58] calculated the optimal value of b, that maximizes the expected value of the discounted
dividend payments in this situation. For linear dividend barriers by = b+ at GERBER [27]
derived an upper bound for the probability of ruin by martingale methods and in [30] he ob-
tained exact solutions for the probability of ruin and the expected sum of discounted dividend
payments W (u,b) for exponentially distributed claim amounts; this result was generalized by
SIEGL AND TICHY [62] to arbitrary Erlang claim amount distributions, see also ALBRECHER
AND TiICHY [5].

In [2] non-linear dividend barrier models of the type

1/m
t

were introduced and integro-differential equations for ¢(u,b) and W (u,b) were derived. The
existence and uniqueness of the corresponding solutions was discussed and techniques for
numerical solutions were developed and tested for the case of an exponential claim size distri-
bution. In [4] this approach was applied to more general claim size distributions and at the

same time continuously compounded interest on the free reserve was included in the model.

The article [3] (and thus also this chapter, which is based on the article) is a more general and
extended version of [4]. In Section 4.2 we identify ¢(u,b) and W (u,b) as solutions of bound-
ary value problems for integro-differential equations and also as fixed points of contracting
integral operators which gives rise to the development of efficient number-theoretic simulation
techniques based on Monte Carlo and Quasi-Monte Carlo methods. These are discussed in
Section 4.3. In Section 4.4 we give detailed numerical results for a parabolic dividend bar-
rier. The various simulation techniques are compared on a quantitative and qualitative basis.
Finally the efficiency gain obtained by implementing various low-discrepancy sequences is in-
vestigated and the sensitivity of the simulation results with respect to the model assumptions
is discussed.

4.2 Integro-differential equations and integral operators

In the sequel we will consider dividend barriers of type (4.3). Note that m = 1 corresponds
to the linear barrier case.

The probability of survival ¢(u,b) for the surplus process given by (4.1) and (4.2) can then
be expressed as the solution of a boundary value problem in the following way: Conditioning
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on the occurrence of the first claim, we get for u < b
dt 1/m
d(u,0) = (1 = Adt)p | u+ (c+iu)dt, (bm + —) +
e

u+t(c+iu)dt dt 1/m
+>\dt/ 6wt (ctiu)dt— 2, <bm+—> dF(z). (4.4)
0

(%

Taylor series expansion of (4.4) and division by dt shows that ¢ satisfies the equation

0 0 u
(c+iu)a—i+ma—i—)\¢+)\/o ¢(u — z,b)dF(z) =0, (4.5)

which, for reasons of continuity, is valid for 0 < v < b. For u = b the same arguments can

be used to show that equation (4.5), with ¢ + iu replaced by m, also holds. Thus we
obtain the boundary condition

¢

5 =o. (4.6)

u=b N

A further natural requirement is
lim ¢(u,b) = 6(u), (4.7)
b—oo0

where ¢(u) is the probability of survival in absence of the barrier.

Let furthermore W (u,b) denote the expected present value of the future dividend payments,
which are discounted according to the risk-less interest rate ¢, and stop when ruin occurs.
Then, in a similar way to (4.4), one can derive the integro-differential equation

ow N 1 ow (
ou  ambm1l 9b

(c+iu) Z’—i—)\)W—i—)\/U W(u— z,b)dF(z) =0, (4.8)
0

with boundary condition
ow

ou
Remark 1: In principle, one could follow this approach for any dividend barrier function

=1 (4.9)

u=b N
by = f(b,t) that is monotone increasing in ¢ and satisfies
F(byt) = f(f(b,tl),t - tl) Vb>0andVt >t > 0. (4.10)

The functional equation (4.10) is the well-known translation equation and for functions f(b,t)
which are monotone increasing in b and ¢ and continuous in b, the general solution of (4.10)
is given by

fbt) = h(h*l(b) +t),

where h(t) = f(bo,t) is some given initial function (see e.g. ACzEL [1]). From h(t) =
(by* +t/a)™ we obtain (4.3) as a special case. Other solutions of (4.10) include for instance
f(b,t) = b+ at (linear barrier) or f(b,t) = (v/b+ t)? (quadratic barrier).

3|

Remark 2: For the special case of exponentially distributed claim sizes it follows from
(4.5) and (4.8) that ¢(u,b) and W (u,b) can be expressed as the solutions of boundary value
problems for second-order partial differential equations of hyperbolic type. However, due to
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the structure of the boundary conditions this does not lead to a simplification of the problem

(cf. [2]).

Following a procedure developed by GERBER [30] for the case of linear barriers, we first show
that the boundary value problem (4.8) together with (4.9) has a unique bounded solution.
For that purpose, we define an operator A by

*

t ) (c4u)ert—c ) t 1/m
Ag(u,b) = /0 )\e_()‘“)t/o gl (d+uet—c -z, <bm + E) dF (z)dt+

t

o ) P\ Ym £\ L/m
+ [ Ae”OFD / gl (™ + = N dF(2)dt+
t* 0 a a
> —At ! —is : is 1
+ e e (c+iu)e T Tm ds dt, (4.11)
t* ¥ mao (bm + %)

with ¢ = ¢/i. Here t* is the positive solution of (¢ 4+ u)e' — ¢ = (b™ + é)l/m (this number

is unique for all m > 1, since u < b). The solution W (u,b) of (4.8) with its initial condition

(4.9) is a fixed point of the integral operator A. For any two bounded functions g1, g2

o0
(i A
|Ag1(u,b) — Aga(u,b)| < [lg1 — g / AemMHtgr < i g1 — g2l (4.12)
0
for arbitrary 0 < u < b < oo, where ||-|| is the supremum norm on 0 < u < b < oo, and thus

it follows that A is a contraction and the fixed point is unique by Banach’s theorem.

The integral operator (4.11) does not only prove the existence and uniqueness of a solution of
(4.8) and (4.9), but also allows for the development of numerical solution algorithms taking
advantage of the contraction map (see Section 4.3).

Unfortunately, the same approach does not allow to show the contraction property of the
corresponding integral operator for the probability of survival ¢(u,b). We will see in Section
4.3, that by stochastic simulation of the risk reserve process one still can obtain numerical
solutions for ¢(u,b) in a satisfying way. But especially for efficiency comparison purposes of
the various numerical solution methods it would be nice to have such a contracting integral
operator available. Thus we also consider a slight modification of our risk model in that we
introduce an absorbing upper barrier b, = const, i.e. if the surplus process R; > by for
some t > 0, it is absorbed, the dividend payments stop and the company is considered to have
survived. From an economic point of view this can be interpreted that the company will then
decide to pursue other forms of investment strategies. Mathematically, this model has some
nice features (e.g. the process stops in finite time with probability 1). In the sequel we will
refer to this modified version as Model B. The boundary value problem for the probability of
survival can then be formulated by (4.5), (4.6) and

¢(u)
¢(bmax) ’

where 0 < u < b < by, and as before ¢(u) is the probability of survival in absence of the

¢(u7 bmax) = (413)

barrier.
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In Model B we can now proceed to obtain a contraction map for the probability of survival
as its fixed point: Like in equation (4.11), let t* be the time when the surplus would reach

the dividend barrier given that no claim occurs. Let furthermore t** = «(b),, — b™) be the

max
time when the dividend barrier reaches the absorbing barrier, and

- 1 ¢+ i bmaz
t=-log | —
) ctiu

the time when the surplus would reach the absorbing barrier in the absence of a dividend
barrier and of claims. As the dividend barrier is an increasing function on R™*, t** is uniquely
determined, just as is . Combining the two possible scenarios 0 < t** < ¢ < t* and 0 < t* <

3=

t < t** (depending on the values of u and b), we define the operator A as
> dF(z) dt +e T,

T Zmaz (U,b,t) t
Ap(u,b) = / )\eAt/ & | Zmaz(u,b,t) — 2, <bm + —)
0 0 @
(4.14)

where T' = max (t~, t**) is the (finite) time when the surplus process reaches the absorbing
upper barrier b,,,; in the absence of claims, and

«

1
Zmaz (U, b,t) = min ((c’ +u)et — ¢, <bm + i) m) . (4.15)
Let ¢1 and ¢5 now be two bounded functions on 0 < u < b < bypqz, then

T
401 (0.8) = Ada(u D) < 61 6] [ At = o1 = gall (1= 7T

Since T'= T'(u,b) < M < oo, this operator is a contraction, and Banach’s fixed point theorem
establishes the existence and uniqueness of the solution ¢(u,b) in Model B.

Correspondingly, the contraction map for the expected sum of dividend payments in Model
B is given by

0 (0%

t* ] (c'+u)ett—c! ' + 1/m
Ag(u,b) = A~ AFD1 / gl (d+u)e - -z, (bm + —) dF (z)dt+
0

r* t

o)t £\ Ym £\ Y™
+ / e~ A+t / q (bm + —) —z, (b’” + —) dF(2)dt+
t* 0 (6% (6%

t** ) ) 1
- / e~ M (e 4 iu)e™ — i | At (4.16)
- e (b + &)

if £** > ¢* and Ag(u,b) = 0 otherwise, because then the surplus reaches the absorbing barrier
before the dividend barrier. The last term in (4.16) represents the dividends that are paid
out until ¢** and is a simplification of the original expression

E*

1

t
Ae‘”/ e | (c+iu)e — ds dt+
/t* t* ( mao (bm + %)lfl/m
00 t** ) ) 1
/ e M / e | (c+iu)e” — -y ds dt.
EE* t* mao (bm + ﬁ) m

«
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From (4.16) it follows that

)\ _ A
[4g1(u.8) = Aga(u D] < 7 (1= ¢ ) flgs — g

for any two bounded functions g1, ¢> and we again have a contraction in the Banach space
of bounded functions equipped with the supremum norm, which implies the existence and
uniqueness of the solution.

Since these boundary value problems can not be solved analytically, there is a need for effective
algorithms to obtain numerical solutions. Here we focus on the development of number-
theoretic solution methods based on the corresponding integral operators and on stochastic
simulation, respectively.

4.3 Numerical solution techniques

The following three algorithms are presented in terms of operator (4.11). However, the adap-
tation to the other integral operators introduced above is straight-forward.

4.3.1 Double-recursive algorithm

Following a technique that was already used in TICHY [68], the fixed point of (4.11) can be
approximated by applying the contracting integral operator A k times to a starting function
h(u,b) which we choose to be the inhomogeneous term in the corresponding integral operator
(where k is chosen according to the desired accuracy of the solution):

9" (u, b) = A* g0 (u,b),

00 t
9O (u,b) = h(u,b) := / )\e’\t/ e | (c+iu)e™ — ! =y ds dt.
t* t* (bm ) m

This leads to a 2k-dimensional integral for g(*)(u,b), which is calculated numerically using
Monte Carlo and Quasi-Monte Carlo methods. For that purpose we transform the integration
domain of operator (4.11) into the unit cube:

Ag(u,b) = h(u,b) + A

)\+
1 a
)™ .
. l( e~ (At // <c +u)e'™ - — 2z, (b + 1) ) -F((c’—i—u)e”1 —c’) dvydwn
a
00
11 a1

—(A+i)t” //g ( 9, (bm + t_2) )dUQdWQ]

o
00

B Ot :
. log (1 w1§1+i€ ) z21=F"1 (v F(( +u)e —)) (4.17)

tgzt*—log(()\l#t)m ZQZF_l <02-F<<bm+%>m>>. (418)

3=
N—————
=
/N
/N
(wpd
3
+
Q Sl
~——

with
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The Monte Carlo-estimator of W (u,b) for given values of u and b is

N
1
~ N Z gﬁzk) (uv b) ’ (4'19)
n=1

where the gﬁlk) (u, b) are calculated recursively for each n by

99 (u,b) = h(u,d)

and

A
At

1
{F <(c +u)e ”1 m— ) < _()‘”)t*) i+ u)eitzim —d - zin, (bm + o;n> +

1

tha\™ N th - th "
+F 4 n ef()\Jrz)t g1(1271) b 4 ,n _ Z% - b 4 ,n .
(% « ’ «

Here !, and 2}, (j = 1,2) are determined according to (4.17) and (4.18) for (quasi-)random

g9 (u, b) = h(u,b) +

deviates v;,w; of the uniform distribution in the unit interval (1 <7 < k).

Since in every recursion step the function g is called twice, the number of evaluations of g
doubles in every recursion step. Thus, in order to keep the computations tractable, in what
we will call the double-recursive algorithm in the sequel, the double recursion is only used for
the first three recursive steps and for the remaining recursion steps the recursive algorithm
described in Section 4.3.2 is applied.

4.3.2 Recursive agorithm

Instead of calculating the first two integrals occurring in operator (4.11) separately, one can
combine them to one integral. A suitable change of variables then leads to

Ag(u,b) =

/ / —F (maz (1,0, )) g <zm(u bt) — 2, (bm + §>E> dvdw  (4.20)

where t and z are given by

~log(1 —w)
(A +1) (4.21)
z=—F"1 (U : F(zmax(u7b7t))>

and zmax (u, b, t) is determined by (4.15). The integral operator (4.20) is now applied & times
onto ¢'°), and the resulting multidimensional integral g(*)(u, b) is again approximated by

g% (u, b) ~ Zg (4.22)
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where each gﬁf) (u,b) (n =1,...,N) is based on a pseudo-random (or quasi-random, resp.)

point x,, € [0,1]?* and calculated by the recursion
g (u,b) = hu,b),

A
A+

98 (u,b) =

L
F (zmam(u, b, t;)) gg_l) (zmam(u, btl) — 2t (bm + t—") ) + h(u,b),
a

with 1 <4 < k. t! and 2! are given by (4.21) with v and w being the value of the (2i)-th
and (2¢ + 1)-th, component of x,,, respectively. Note that for this algorithm, the number
of integration points needed for a given recursion depth is one eighth of the corresponding
number required for the double-recursive case.

4.3.3 Iterative algorithm

Another solution technique based on the integral operator (4.20) is to discretize the domain of
wand b by a grid (u;,bx), 0 < j < jmaz, 0 < k < kpay. After assigning a suitable initial value
to each discretization point (u;,by), the operator is applied sequentially to each point (u;, by)
of the grid. The resulting approximative solution QJ(Z,)C at point (uj,by) and iteration depth ¢
is calculated from the values of §@~1 at depth (i — 1) by a two-dimensional integral, which is
evaluated by Monte Carlo and Quasi-Monte Carlo methods. Since §~1) is only defined for
the discretization points (uj,by), the function g(2zmas(u,b,t) — z, (0™ + t/a)l/m) in operator
(4.20) is replaced by an interpolation function (Y, 2 (u, b, t)—z, (B™ + t/a) /™) defined
in (4.24). Thus we have

3\ =h(u;, by)

) =h(uj,br) +

A+i (4.23)
th

N 1
N ZF (zmax(uj7 blmtiz)) I (g(ZD’ Zmax(uj7 blﬁt?zm) - Z1217 <bZL + _> >
n=1

«

for 1 < i < 4;yae. The variables (t,2) are obtained from the elements of a 2-dimensional
sequence according to (4.21), and the iteration depth i,,,, does not have to be fixed in advance

but may be chosen according to the desired accuracy of the approximation.

In our calculations we use a linear interpolation function for approximating the value of ¢(*)
at point (u,b) with u; < wu < wjiq and by < b < byyq:

; — U b—b ; u—u; b—2>b ;
(69 u,b) = (1 _ u) (1 _ k > 59 4 j k_~() i
4 ) Ujt1 — Uj bt — b)) % T gy — g by — by TR

U — b—by () U — u; < b— by >A(z’)
1- - Y L (1- Y (424
( Uil — uj) brrr — bkg],k—l—l Uit — 1 D1 — bk 91k ( )

If uj 1 > by (i-e. the left upper corner of the surrounding rectangle lies above u = b and thus

outside the valid domain of g), then g]@L ;. needs to be replaced by

(4) (%) (%)

9ik T 9541 k+1 ~ 9jkt1

in (4.24) meaning that the plane defined by the remaining three corners is then used for the
linear interpolation. If (u,b) lies outside the area that is covered by the grid, the nearest

rectangle ((u;,b), (wjt1,bk+1)) covered by the grid is used for extrapolation by (4.24).
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4.3.4 Simulation

Another way to obtain numerical solutions is stochastic simulation of the surplus process. For
that purpose we sample N paths of the risk reserve process in the following way: Starting
with tg = 0, by = b and xy = u, where u is the initial reserve of the insurance portfolio,
we successively generate exponentially distributed random variables fj with parameter A for
the time until the next claim occurs and set ¢;41 := t; +¢; (j € N). The claim amount z;
is then sampled from the corresponding claim size distribution by the inversion method, and
the reserve after the claim is ;41 = min{(¢’ + xj)eiff =, (b + ti/a)l/m} — z;. Due to the

structure of the dividend barrier, we can reset the origin to ¢;,1 in every step, if we also set

N\ 1/m
bjt1 = <b§“ + %’) . We then have to discount the dividend payments between the j-th and
(7 + 1)-th claims by the factor e=%i.

A simulation estimate for the survival probability ¢(u,b) can now be obtained by

m

¢(u7 b) ~ N7

where m is the number of paths for which ruin does not occur (i.e. z; > 0V j). We consider
a path as having survived, if for some j the condition z; > x4, is fulfilled, where 4, is a
sufficiently large threshold. This can be viewed as an absorbing horizontal barrier at x4z,
and so the process stops with probability 1. Using this stopping criterion, we overestimate
the actual probability of survival ¢(u,b); for sufficiently large x4, however, this effect is
negligible.

For the simulation of the expected value of the dividend payments, we proceed as described
above and whenever the process reaches the dividend barrier, i.e. (¢ + z;)es —¢ > (0" +
t; /a)i, we need to calculate the amount of dividends that are paid until the next claim j

occurs:

1—L
mao <b;” + ﬁ) "

(0%
. 1/m
and vy = 0, where ¢* is the positive solution of (¢/ + z;)e't — ¢ = <b§“ + %) , i.e. the time
when the process reaches the dividend barrier. The process is stopped, if ruin occurs (i.e.
x; < 0 for some j) or at some sufficiently large time ¢4, after which the expected value of
discounted dividends becomes negligible due to the discount factor e~*. Let v(k) now be the
final value of v; for path k. The expected value of the dividends is then approximated by

N
> (k)
k=1

W(u,b) ~

2|~

4.4 Numerical results for the parabolic case

In this section we present numerical results for a parabolic dividend barrier of the form
by = /b?>+t/a and various claim amount distributions. Note that in this case, t* is the
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solution of the equation
- \ /2
(Cl—{—u)GZt —C,:<b2—|—g> ,

which needs to be calculated numerically, and the inhomogeneous term h(u,b) in (4.11) can
be calculated to

—it* 22

h(u,b) = e <c—i;\zu _C 26 o —;—Tz’)a erfc(z))

with 2 = /(A + i) (ab? + t*).

4.4.1 General remarks

Table 4.1 gives the choice of the parameter values and the densities of the claim size dis-
tributions used in our calculations. The corresponding distribution parameters are chosen
such that the mean and variance of the distributions coincide and are equal to 1 and 0.5,
respectively. Three of the four distributions are heavy-tailed.

Parameter Values
b height of dividend barrier at time ¢ =0 0..]0.1]..1
u initial capital 0..]0.1]..b
¢ premium density 1.5
A intensity of claim number process 1
1 constant interest force 0.1
@ dividend barrier parameter 0.5
tmax stopping criterion for simulations 100
brmaz absorbing upper barrier in Model B 4
Claim size distributions density
Gamma (2,2) f(x) =4dxe 2@
) _ (log x+02023)2
Lognormal (—0.203,0.637) f(z) = werrret
Pareto (2.732,0.634) f(z) = 0.786 5
2 \1.44
Weibull (1.44,1.10) Fla) = 1.31 (&) e (1)

Table 4.1: Parameter values and claim size distributions

The MC and QMC estimates are obtained using N = 66 000 paths for the recursive case and
for the simulation and N = 33000 for the double-recursive and iterative calculations. Since
exact values are not available, we estimated them by a MC-simulation over 10 million paths
for every choice of u and b.

For the recursive and double recursive calculations we use a recursion depth of k = 66, which
leads to a 132-dimensional sequence needed for the MC- and QMC-calculations, while for
the simulation it turned out to be sufficient to take a 400-dimensional sequence so that 200
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consecutive claims and interoccurrence times of a risk reserve sample path can be simulated
from one element of the sequence and correlations among the claim sizes and claim occurrence

times are avoided.

For the iterative calculations we use a depth of i,,,, = 66 and enlarge the grid to b = 7 so
that the extrapolation from the array in 0 < u < b < 1 is sufficiently accurate.

All our QMC-calculations are actually hybrid Monte Carlo estimates, i.e. the initial 50 di-
mensions are generated by a 50-dimensional QMC sequence and the remaining dimensions are
generated by a pseudo-random number generator. The use of hybrid Monte Carlo sequences
has proven to be a successful modification of the QMC-technique, since for low discrepancy
sequences typically the number of points needed to obtain a satisfying degree of uniformness
dramatically increases with the number of dimensions. Moreover, due to the nature of our risk
reserve process, the initial dimensions of the sequence have a higher impact on the solution
than higher dimensions.

Throughout this chapter, we use ran2 as our pseudo-random number generator as described
in [59], which basically is an improved version of a Minimal Standard generator based on a
multiplicative congruential algorithm.

The different methods and sequences used are compared via the mean square error (MSE)

5= %( > (stwt) - gtu)’,

u,b)eP

where g(u,b) and g(u,b) denote the exact and the approximated value, respectively, and the
set P is a grid in the triangular region (b = 0..[0.1]..1,u = 0..[0.1]..b). In addition, for each
method we give the maximal deviation of the approximated value from the corresponding
exact value [|A[|, = max(,pep (g(u, b) — g(u, b))

The simulations showed that the implementation of Faure and Niederreiter (0, s)-sequences
cannot compete with the performance of other low-discrepancy sequences for the integrands of
our problems. Therefore the simulation results of these two sequences have not been included
in the following considerations.

4.4.2 Error analysis
Survival probability

In Model A the survival probability can only be calculated using the simulation approach.
Figure 4.2 shows the errors for the Weibull distribution and Table 4.2 gives the mean-square
and the maximal error of the simulation results for each of the sequences and claim size
distributions used (N = 66 000).

Here, only the Sobol sequence leads to an improvement compared to the Monte Carlo simu-
lation.

In Model B, the integral operator (4.14) can be used to calculate the survival probability, and
the errors of the different methods are given in Table 4.3.
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Figure 4.2: MSE of the simulation of ¢(u,b) as a function of N (Model A, Weibull distribution)
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Figure 4.4: Fitted MSE of ¢(u,b) estimates (Gamma distribution, Model B)



Chapter 4. Efficient simulation techniques for a generalized ruin model

41

Monte Carlo Halton  Niederr. (t,s) Sobol
Gamma S 0.001744 0.002247 0.002585 0.001111
A, | 0.004195 0.004773  0.004595 0.002393
Lognormal S 0.001648 0.001678 0.001813 0.001437
A, | 0.003738 0.004164  0.003402 0.002687
Pareto S 0.001888 0.002119 0.002043 0.002695
|All | 0.004477 0.004285 0.005239 0.00431
Weibull S 0.001632 0.002423 0.002656 0.001141
|All | 0.00463 0.004685 0.004179 0.002338

Table 4.2: Simulation errors for the survival probability in Model A

‘ Monte Carlo Halton Niederr. (t,s) Sobol
Gamma
Simulation S 0.00186705  0.000698195 0.00180109 0.000303748
Al | 0.004275 0.001265 0.003022 0.000612
Recursive S 0.00115668  0.000148828 0.000216361  0.000157103
|All | 0.003236 0.000331 0.000486 0.00036
Iterative S 0.010934 0.0107691 0.0108299 0.0108279
A, | 0.015 0.013732  0.013807 0.013803
Lognormal
Simulation S 0.0018042 0.000351439  0.00195453 0.000282303
A, | 0.004136 0.001045  0.003431 0.000923
Recursive S 0.00119801 0.000146449 0.000221486  0.000187532
|All | 0.0033 0.000332 0.000523 0.000424
Iterative S 0.0115233 0.0113429 0.01141 0.011408
|All | 0.015954 0.014688 0.014772 0.014767
Pareto
Simulation S 0.00187995 0.000494491 0.00159844 0.000652944
Al | 0.004005 0.001343 0.003035 0.001666
Recursive S 0.00144045 0.000177989 0.000210099  0.000208204
Al | 0.003893 0.000513 0.000539 0.00044
Iterative S 0.0131512 0.0129077 0.0129771 0.012975
Al | 0.018795 0.01741 0.017498 0.017498
Weibull
Simulation S 0.0017325 0.000530047 0.00132312 0.000342577
|All | 0.004521 0.001225 0.002562 0.000812
Recursive S 0.00114726  0.000155255 0.000215812  0.000147719
Al | 0.003259 0.000377 0.00047 0.00036
Iterative S 0.0106633 0.0105005 0.0105598 0.0105578
A, | 0.014519 0.013309  0.013382 0.013378

Table 4.3: Simulation errors for the survival probability in Model B
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To quantify the effect of using a low discrepancy sequence, we perform a regression analysis
by fitting
logy () = ag + a1 logy(N) + azlogy(logy(N)) + €

to the data using a least square fit. Note that Koksma-Hlawka’s inequality (2.1) could be
interpreted as implying a; = —1 and ao = s, where s is the dimension of the sequence used.
However, since we use a hybrid sequence and since the effective dimension may differ from
the theoretical dimension, the values of a; and ao deviate from the ones above. Figures 4.3
and 4.4 show these regression fits for the Pareto and Gamma distributions, the Weibull and
Lognormal distributions show a similar behaviour. In the sequel, all figures will be given in
terms of their regression fits.

Expected value of the dividend payments

The simulation results for the expected value of the dividends in Model A show a clear
advantage of QMC methods over MC integration. As an illustration, Figure 4.5 depicts the
MSE of the simulation results as a function of N for the Weibull distribution.

While for small N, the Sobol sequence outperforms the other sequences by a factor of about
4 in terms of the MSE, for large N the Halton sequence used in the recursive algorithm is to
be preferred. To quantify this effect, we introduce the efficiency gain

N (5)
N (S)

gain; =

where Ny (S) is the number of paths needed in the Monte Carlo simulation to reach a given
error of S, and N(S) is the corresponding N using an alternative method. Figure 4.6 shows
that except for the (0, s)-nets (which are not plotted) all methods are an improvement in
efficiency compared to Monte Carlo simulation and the gain increases at smaller errors.

The above comparisons are performed with respect to N, the number of summands in the
MC and QMC approximations. However, it might be preferable to compare the accuracy
of the various numerical solution techniques with respect to calculation time, see Table 4.4
and Figure 4.7. It turns out that the performance of the double recursive algorithm is still
competitive when measured with respect to calculation time; however, the recursive method
using Sobol’s sequence seems preferable. One also has to notice that the Niederreiter sequence
in base 2 gives results worse than the Monte Carlo methods, which is due to the fact that in
Model A, all 50 QMC dimensions of the elements are relevant. However, the quality of the
different sequences also depends on the claim distribution used, as a comparison with Figure
4.8 shows. Moreover, it is clearly visible that although the simulation is the fastest method
using N elements, it is actually the worst when the error is considered.

Figure 4.8 furthermore shows an attempt to compare the results of the iterative method with
the other methods. Here some care is needed, since the recursion depth &k of the recursive
algorithms is fixed in advance (and thus also the error caused by choosing k) and the number
N of sequence elements is increased with time. On the other hand, for the iterative method
N is fixed in advance and the iteration depth is increased with time.

The calculations show that for all iterative methods and the above choice of initial values, it
takes 40 to 50 iterations until the approximations are sufficiently close to the exact values.
Thus one might try to improve the efficiency of the algorithm by first simulating the process
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Figure 4.5: MSE of expected dividend payments (Weibull distribution, Model A)
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Figure 4.6: Efficiency gain for calculation of expected dividends (Model A, Weibull distribution)

Simulation Iterative Recursive | Double Rec.
Monte Carlo | 209.551 413.685 746.824 3062.61
Halton 186.033 407.416 802.648 3162.44
Niederr. (t,s) | 250.527 388.903 732.736 3036.35
Sobol 186.813 174.247 947.162 2811.14
Faure 393.982 174.3 732.161 3028.67
(0,8) net 179.47 389.017 732.048 3028.34

Table 4.4: Calculation times in seconds (expected dividends, Lognormal distribution, Model A)
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Figure 4.7: MSE of the expected dividend payments as o function of calculation time (Lognormal
distribution, Model A)
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Figure 4.8: Calculation times in seconds (expected dividend payments, Pareto distribution, Model
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(with a small number N; of simulation paths) and then use these simulation estimates as initial
values for the iterative procedure. Naturally, this choice of initial values for the grid has a
much lower initial error than using h(uj, b;), but is much less smooth than i which lowers
the convergence rate of the algorithm. However, Figure 4.9 shows that even for Ny = 10, this
approach substantially improves the plain iterative method.

In contrast to Model A, in Model B the effective dimension of the simulation as well as the
dimension of the iterated integral operator becomes very small. It turns out that for the
Weibull, Gamma and Lognormal distribution on average only about 8 claims or iterations of
the operator are needed until b becomes large enough so that practically no dividends will
be paid out any more, and for the Pareto distribution only 3 to 6 claims are needed. So
while Model A is a high-dimensional problem (with 50 QMC dimensions in our case), Model
B is low-dimensional with an effective dimension of less than 20 (every claim or recursive
step needs two dimensions), and one can expect the usual good properties for low-discrepancy
sequences in low-dimensional environments. Figure 4.10 shows the MSE as a function of N for
the Gamma distribution. The behavior is similar to Model A, except that now the (¢, s) nets
exhibit a good convergence which is even better than Halton’s sequence (other distributions
also show a similar behaviour). Here again, Sobol’s sequence is by far the best for a low
number N of points, but loses quality for larger N (cf. Figure 4.11). Figure 4.12 depicts the
MSE as a function of calculation time.
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D.Rec. Sobol

Figure 4.10: MSE of expected dividend payments (Gamma distribution, Model B)

As pointed out by BRATLEY, FOX and NIEDERREITER [14] and numerically investigated by
Rapovic, SoBoL’ and TicHY [60], the distribution behavior of the initial elements of (¢, s)
nets is not satisfying due the so-called leading-zeros phenomenon. Thus, it has been suggested
to start the sequence at n = p* (called the “step”), with k being at least the maximum degree
of the polynomials used to generate the sequence and p denoting the base of the construction.
As Figure 4.13 shows, introducing the step indeed considerably improves the performance of
(t, s)-sequences for moderate sizes of N.

The iterative method in Model B is very sensitive to the choice of the mesh-size of the grid,
so that one has to select a very small mesh-size to get good results. It turns out that for a
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mesh-size of 0.5 and 0.2 for values of b > 1 up to b = 4 (when no dividends will be paid out
any more due to the absorbing barrier), the obtained values typically still are about 0.02 and
0.003, respectively, greater than the exact value.

Tables 4.5 and 4.6 give a complete list of all the errors of the various methods for all distri-
butions in Model A and B, respectively.

4.4.3 Model analysis

In this final section we want to use our simulation results to investigate the sensitivity of
the probability of survival and the expected dividend payments to the claim size distribution
and to the consideration of interest rates. For that purpose we fix a value of b (the initial
height of the dividend barrier) and plot ¢(u,b) and W (u,b) against u. Figures 4.14 and 4.15
depict ¢(u,b) for the choice b = 1 in Model A and B, respectively. They also include the
corresponding plot for ¢ = 0. Note that all the distributions are normalized to have equal
mean and variance. Since heavy tail distributions exhibit their characteristic behavior for
larger values of u, we also give a plot of ¢(u,b) against u for b = 30 in Model A (Figure 4.16).
A double logarithmic plot of the ruin probability (Figure 4.17) against u (for fixed b = 30)
displays a similar behaviour of the heavy-tail distributions in our dividend barrier model as
it has been obtained by simulation of surplus processes without a barrier (see e.g. ASMUSSEN
AND BINSWANGER [9]). Note that the Pareto distribution implies a qualitatively different
behavior of ¢(u,b) for large u. Related simulations have shown that for larger values of the
variance, this is also the case for Log-normal distributions (cf. HEERSINK [39]).

Figures 4.18 and 4.19 show the dependence of the expected dividend payments on w for fixed
values of b = 1 and b = 30, respectively. Here it turns out that the consideration of gaining
interest on the free reserve has a large effect on the values of W (u,b), whereas the choice of
the claim size distribution is more or less negligible.
As an illustration Tables 4.7 to 4.10 give the exact values of ¢(u,b) and W(u,b) for the
Gamma distribution in Model A and B, respectively.
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‘ Monte Carlo Halton Niederr. (t,s) Sobol
Gamma
Simulation | S 0.0102387 0.00589075 0.00644128 0.0122924
Al | 0.02573 0.01542 0.01382 0.01653
Recursive S 0.00690747 0.00186699 0.00504432 0.00138267
IA]l. | 0.02303 0.00331  0.00699 0.00274
Double Rec. | S 0.00699453  0.00185775 0.00333911 0.00110242
IA]l. | 0.01626 0.00362  0.00535 0.00249
Iterative S 0.016958 0.0153584 0.0160474 0.0160834
Al | 0.02798 0.02057 0.02143 0.02146
Lognormal
Simulation | S 0.0104705 0.00609589 0.00585217 0.0139076
Al | 0.02215 0.01477 0.01377 0.01843
Recursive S 0.00719265 0.00164129 0.00622522 0.0016576
1Al | 0.02355 0.00323  0.00863 0.00296
Double Rec. | S 0.00708872 0.00148873 0.00484965 0.00100742
Al | 0.01592 0.00319 0.00739 0.00248
Iterative S 0.0170572 0.0154885 0.0162279 0.0162694
IA]l. | 0.02873 0.02154  0.0225 0.02254
Pareto
Simulation S 0.0111856 0.0130283 0.0127553 0.0221408
|All | 0.0297 0.0237 0.02513 0.0275
Recursive S 0.00828872  0.00167252 0.00790734 0.00251632
Al | 0.02591 0.00407 0.0114 0.00455
Double Rec. | S 0.00767502 0.00131978 0.00807013 0.00119566
IA]l | 0.01775 0.00371  0.0114 0.00322
Iterative S 0.0216169 0.0206179 0.0213459 0.0214136
IA]l. | 0.03623 0.02009  0.03007 0.03013
Weibull
Simulation | S 0.00985157  0.005163 0.00685562 0.012519
Al | 0.02465 0.01205 0.01505 0.01741
Recursive S 0.0068602 0.00201594 0.00457433 0.00133397
Al | 0.02297 0.00354 0.00627 0.00272
Double Rec. | S 0.00699997  0.00211651 0.002768 0.00110075
IA]l | 0.01634 0.00384  0.00449 0.00236
Iterative S 0.016865 0.0152578 0.0159104 0.0159438
1A | 0.02783 0.02037  0.02119 0.02122

Table 4.5: Errors of the various methods for expected dividend payments in Model A
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‘ Monte Carlo Halton Niederr. (t,s) Sobol
Gamma
Simulation | S 0.00548782  0.00101735  0.000896726  0.00102161
lAll | 0.01285 0.00238 0.00201 0.00246
Recursive S 0.00258046 0.000573281 0.00048327 0.000696459
IA]l | 0.00652 0.00171 0.00151 0.00201
Double Rec. | S 0.00237654  0.00062463  0.000638122  0.000951905
IA]l | 0.00559 0.00185 0.00188 0.00239
Tterative S 0.0176776 0.018468 0.0183926 0.018383
lAll | 0.02558 0.02328 0.02317 0.02316
Lognormal
Simulation | S 0.00496058  0.000959204 0.00115588 0.000858514
lAll . | 0.01278 0.00206 0.00274 0.00289
Recursive S 0.00263774 0.000567729 0.000465821 0.000696362
IA] | 0.00689 0.00182 0.00161 0.00215
Double Rec. | S 0.00229559 0.000588638 0.000605718 0.000989495
lA]l | 0.00526 0.00193 0.00197 0.00256
Iterative S 0.0216594 0.0225257 0.0224476 0.0224349
lA]l | 0.03055 0.02876 0.02864 0.02864
Pareto
Simulation | S 0.005052 0.000733847 0.00111069 0.000917839
IAll | 0.01517 0.00156 0.00292 0.00219
Recursive S 0.0028135 0.000453588 0.000424179  0.000635163
|A]ll | 0.00802 0.00166 0.00156 0.00204
Double Rec. | S 0.00197331 0.000496007 0.000579632 0.000935201
A, | 0.003926 0.00178 0.00203 0.00245
Iterative S 0.0301029 0.0310616 0.031024 0.0310033
A, | 0.04231 0.04179 0.04173 0.04171
Weibull
Simulation | S 0.00533089  0.000849476 0.000803501  0.000875673
lAl | 0.0136 0.00242 0.00216 0.00203
Recursive S 0.00257658  0.000570681 0.000486129  0.000688766
lA]l | 0.00652 0.00178 0.00158 0.00207
Double Rec. | S 0.00241979  0.000619308 0.000643352  0.000921779
1A | 0.00572 0.00191 0.00196 0.00243
Tterative S 0.016305 0.0170657 0.0169917 0.016983
lA]l . | 0.02382 0.02149 0.02138 0.02138

Table 4.6: Errors of the various methods for expected dividend payments in Model B
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#(u,1)
035 Pareto, no interest
050 ————Weibull, no interest
325+ Gamma, no interest
0.3} — - — - - Lognormal, no interest
0275 | Pareto
————— Weibull
025+ 7 e = Gamma
0225t —-—-- Lognormal
0.175¢
Figure 4.14: Survival probability ¢(u,1) in Model A
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Figure 4.15: Survival probability ¢(u,1) in Model B
$(u,30)
==_U
123456 AT ARAZISIANS Lognommal, no interest
0.98 70 Weibull, no interest
oesl [ & e Pareto, no interest
—-—-- Gamma, no interest
0.94 ———  Lognormal
77777 Weibull
0.92
rrrrrrrrr Pareto
0.9 —-—-- Gamma

Figure 4.16: Survival probability ¢(u,30) in Model A
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Log(y(u,30))

Lognormal, no interest
Weibull, no interest
Pareto, no interest
Gamma, no interest
Lognormal

Weibull

Pareto

Gamma

Figure 4.17: Log-log plot of the ruin probability 1)(u, 30) against u (Model A)
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Figure 4.18: Expected dividend payments W (u,1) in Model A
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Figure 4.19: Ezpected dividend payments W (u, 30) in Model A



Chapter 4. Efficient simulation techniques for a generalized ruin model

52

b\z 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0 0.18

0.1 0.18 0.188

0.2 | 0.181 0.189 0.197

0.3 | 0.182 0.191 0.199 0.206

04 | 0184 0.193 0.201 0.209 0.214

0.5 | 0.187 0.196 0.204 0.212 0.219 0.223

06 | 0189 0.199 0.208 0.217 0.224 0.23 0.233

0.7 | 0193 0.202 0.212 0.221 0.229 0.235 0.241 0.243

0.8 | 0196 0.206 0.216 0.226 0.235 0.242 0.248 0.252 0.254

0.9 0.2 0.21  0.221 0.231 0.24 0.249 0.2566 0.261 0.265 0.266

1. 0.203 0.215 0.226 0.236 0.246 0.2556 0.263 0.27 0.275 0.278 0.279

Table 4.7: Exact values for the survival probability of the Gamma distribution, Model A

b\z 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0 1.78

0.1 | 1.782 1.904

0.2 | 1.783 1.906 2.036

0.3 | 1.785 1.911  2.04 2.17

0.4 | 1.789 1915 2.048 2.177 2.303

0.5 | 1.794 1.922 2.053 2.188 2315 2.436

0.6 | 1.799 1.927 2.062 2.196 2.327 2456 2.572

0.7 | 1.805 1935 2.069 2.205 2339 2.468 2.594 2.709

0.8 | 1.811 1942 2.076 2.215 2352 2.485 2.614 2736 2.85

0.9 | 1.816 1.948 2.084 2.224 2362 2498 2.632 2.757 2.88 2.99

1. 1.818 1.954 2.093 2.231 2372 251 2646 2776 2903 3.02 3.131

Table 4.8: Exact values for the dividends of the Gamma distribution, Model A
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b\z 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0 0.245

0.1 | 0.245 0.256

0.2 | 0.246 0.257 0.267

0.3 | 0.248 0.259 0.27 0.279

04 | 0251 0.262 0.274 0.283 0.291

0.5 | 0.2564 0.266 0.278 0.289 0.297 0.303

0.6 | 0.258 0.27 0.283 0.294 0.304 0.312 0.316

0.7 | 0.262 0.275 0.288 0.3 0.311 032 0327 0.33

0.8 | 0.266 0.28 0.294 0.307 0.319 0.329 0.337 0.343 0.346

0.9 | 0.271  0.286 0.3 0.314 0327 0338 0.348 0.355 0.36 0.362

1. 0.276 0.291 0306 0.321 0.334 0.347 0357 0.366 0.373 0.378 0.38

Table 4.9: Exact values for the survival probability of the Gamma distribution, Model B

b\z 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0 1.096

0.1 | 1.096 1.189

0.2 | 1.092 1.186 1.286

0.3 | 1.088 1.182 1.281 1.384

0.4 | 1.082 1.176 1.276 1.377 1.481

0.5 | 1.075 1.168 1.266 1.369 1.472 1.577

0.6 | 1.064 1.157 1.256 1.357 1461 1.566 1.671

0.7 | 1.053 1.146 1.243 1.343 1.447 1.551 1.655 1.762

0.8 | 1.039 1132 1.228 1.327 143 1535 164 1745 1.85

0.9 | 1.024 1.115 121 1309 1.411 1514 1.619 1724 1.829 1.935

1. 1.006 1.095 1.19 1289 1388 149 1594 1699 1.804 1.909 2.014

Table 4.10: Ezact values for the dividends of the Gamma distribution, Model B
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In this chapter Quasi-Monte Carlo methods for Runge Kutta solution techniques of differential
equations, which were developed by Stengle, Lécot, Coulibaly and Koudiraty, are extended to
delay differential equations of the form v/(t) = f(¢,y(t),y(t — 7(t))). The retarded argument
is approximated by interpolation, after which the conventional (Quasi-)Monte Carlo Runge
Kutta methods can be applied. We give a proof of the convergence of this method and
its order in a general form, which does not depend on a specific Quasi-Monte Carlo Runge
Kutta method. Finally, a numerical investigation shows that similar to ordinary differential
equations this quasi-randomized method leads to an improvement for heavily oscillating delay
differential equations compared even to high order Runge Kutta schemes.

The content of this chapter is being published in [46].

5.1 Introduction

In physics and other engineering subjects, the rate of change of a process y(t) often does not

only depend on the value of y(¢) at time ¢, but also on the values of the process in the past.

The "delay differential equation" for the process then can be written in the general form:
y'(t) = ft,y(t),y(t — 11 (1)), .yt — (1)) for t > to, (5.1)
y(t) =yo(t) fort <ty. (5.2)

55
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The most noticeable difference to ordinary initial value problems is that the initial value must
be given as a function on an interval [inf;>4 o<j<it — 7;(t), %] instead of only the value at
the starting point #.

In [65] and [66] Stengle proposed a (randomized) Monte Carlo algorithm for the solution of
the initial value problem

y(t)=fty®), 0<t<T,  y(0)=yo, (5.3)

where f is smooth in y, but only bounded and Borel measurable in ¢. The family of solution
methods he proposed is akin to the Runge-Kutta family, and thus called the Runge-Kutta
Monte Carlo (RKMC) family. In his derivation he does not discretize the time, but only
the spatial dimensions y, and solves the remaining integral equation using Monte Carlo inte-
gration. Lécot [52], Coulibaly and Lécot [17] and Lécot and Koudiraty [50] generalized this
method for orders up to three, and additionally used Quasi-Monte Carlo methods to calculate
the resulting integral (thus the name RKQMC methods for them).

In their articles, Stengle, Coulibaly, Koudiraty and Lécot apply the Runge-Kutta (Quasi)
Monte Carlo methods only to ordinary differential equation with initial conditions as given
in equation (5.3). We will first give a brief outline of their methods here, before applying
them to delay differential equations. Under the assumptions mentioned above (f does not
even have to be differentiable in ¢, let alone smooth), f(y,y(t)) is Taylor-expanded only with
respect to y(t) and the differential equation is recursively substituted into itself. This leads
to an equation of the form (see [50]):

Flto+h) = ylto) + > / / R s y(to) dus . duy + O | (5.4)
i=1 "t to

where ug = to + h and the Fi, 1 < k < s, are defined recursively by Fy(y) = y, F; =
DyF;_1 f(ui,y). The sum is then combined into one s-dimensional integral over a new function

G, with u = (Uw(1)7 . ,u,r(s)) and a permutation 7 such that urq) < ur@) <+ < ug(y:
1
fo+ W) =y(to) + oy [ Gu(mylt)du+ OB, (5.5)
S'hn (to,t0+h)s

The function Gy is rewritten using a suitable identity (and according order conditions on the
coefficients) to get rid of the derivatives of F; with respect to y(¢). Finally, the remaining
integral is approximated by Monte Carlo integration. The s-order RKQMC method generates
a sequence (yn)o<,, defined by (see e.g. [52] or [50]):

h
Yorr =Y+ g D CGoltasy(ta)) (5.6)
0<j<N
where ¢, ; = t, + h,Z; and ig.l) < j§2) <. <L :f:g.s) are the elements of the s-dimensional

uniformly distributed sequence (x;)o<j<n with their dimensions sorted in ascending order.
The explicit forms of the functions G, G2 and G3 as given by Lécot [52] and Koudiraty [50]
are shown in equations (5.14) to (5.16), the corresponding order conditions can be found in
the cited articles (esp. [50, equations (4.12) to (4.15)]).

We will use this method and extend it to delay differential equations in the rest of the chapter.
Our discussion will not depend on one specific RKQMC method, however, we will also give
specific proofs for the convergence and its order of the RKQMC1 [52], RKQMC2 [52] and
RKQMC3 [50] methods applied to delay differential equations.
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5.2 Description of the problem

We consider initial value problems for delay (also called retarded) differential equations (DDE)
with one retarded argument having the form

y'(t) = f(t,y(t),y(t —7(t), fort>to,

(5.7)
y(t) = ¢(t), for t <to,

where y(t) is a d-dimensional real-valued function (which is in general not smooth), 7(¢) is the
continuous delay function, which we assume to be bounded from below (0 < 79 = inf;>¢, 7(2)).
Furthermore, ¢(t) is the initial function, which is assumed to be piecewise continuous at least
on the interval [infy>4, (t — 7(¢)), to]. We will not discuss the simplest case of a constant delay
function 7(t) = 79, but instead the more general case of a delay function 7(t) satisfying

tl — T(tl) S tQ — T(tg) for tl S tQ s (58)
ie. T(t) ==t — 7(t) is an increasing function of ¢.

Solutions of the differential equation (5.7) are continuous for all ¢ > ¢y and piecewise dif-
ferentiable. Provided that f(t,y,z) is (locally) Lipschitz w.r.t. y and z, the existence and
uniqueness theorems for ordinary differential equations carry over verbatim. However, even
if f and ¢ are smooth, the solution y(¢) is only smooth if ¢(¢) solves the differential equation
(5.7). Otherwise, the solution y(t) will have discontinuous derivatives y)(t;,) for j > k at
times ¢;, which are recursively defined by t;, = T~ '(t;_1) (see [55]). This means that with
each additional time interval of length hy = t; — tx_1, the discontinuities are smoothed out,
and all the derivatives up to the k-th are continuous. For a constant delay function, we have
T~Y(t)_1) = tx_1 + 7o, the solution y(¢) has k continuous derivatives at t, = to + kaug, and
y#+1)(t) in general has a jump discontinuity at tj. If the initial function ¢(t) or its derivatives
have discontinuities, a similar statement holds with ¢y replaced by the discontinuities of the
initial function (see [55]).

5.3 Runge Kutta QMC methods applied to delay differential
equations

We will first discuss how the delayed argument y(t —7(t)) can be treated, and then deduce the
Runge Kutta Quasi-Monte Carlo scheme for delay differential equations, which is a straight
generalization of Stengle’s, Lécot’s and Koudiraty’s schemes applied to this type of differential
equations. However, due to the special nature of delay differential equations, some things need
to be handled more carefully.

5.3.1 Treatment of the retarded value

The main obstacle when solving delay differential equations is the way to treat the additional
argument y(¢t — 7(¢)) which depends on the past values of the solution. Several attempts have
been made (e.g. by Bellman [11] et al.) to calculate the retarded values by recursively using
the DDE itself, however, with this approach the number of calculations increase drastically
with T. The other approach to the retarded argument is interpolation (see e.g. [56]), which
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we will use. Since for the numerical solution of the differential equation the time is split into
discrete time steps, labeled with index n, we have the approximated values of the solution at
the discrete times ¢j, 0 < j < n, available when calculating vy, = y(t,) for n > 0. It seems
natural to use an interpolating function P,(t; (y;)i<n) to approximate the values y(t — 7(t))
from the values y(t;), 0 < j <mn, for t —7(t) > to. If t — 7(t) < to, the initial function ¢(¢)
can be used for the exact values of the solution.

Since the solutions of the differential equation are not smooth, the interpolation must be done
using only past values with 7 <t < --- <t —7(t) < -+ < tgym < To where (71,72) is the
largest interval of smoothness containing ¢ — 7(¢), i.e. 71 and 72 are the closest points where
the derivatives of the solution have discontinuities as discussed in the last section. As the
value of the derivative of y(t) can be easily calculated for each time ¢; by simply inserting into
the differential equation, Hermite interpolation (as investigated in [55]) is used here to reduce
the number of required support points to half the number required by ordinary Lagrange
interpolation. Although the interpolating function then also depends on the approximated
values of the derivative of y(t), we will suppress this in our notation.

Note that the requirement of the interpolation points lying inside an interval of smoothness
also poses a practical restriction on the value of the delay function:

7(t) > ph  or h < %f) , (5.9)

where p is the number of points needed for interpolation, and h is the time step, if the time is
discretized into fixed time intervals. Note also, that this restriction is sufficient, but not the
best possible, and of course it can also be seen as an upper bound for the time step h.

If step-size control methods are applied to the Runge-Kutta method (i.e. the time step h;
of the j-th step is not fixed but chosen such that the error does not exceed a prescribed
threshold), the restriction reads 7(¢) > Z?;é h,—; where v is the largest number for which
t, =1to+ Z]V»ZI hj < t, assuming a smooth initial function. For a non-smooth initial function
the additional discontinuities of the derivatives force an even tighter bound.

If these restrictions are not fulfilled, one can still try to obtain a RKQMC scheme by a Taylor-
Expansion in the retarded argument as well, although this would complicate the algorithm
and its derivation considerably.

These restrictions are the reason why mostly low-order methods for delay differential equations
have been considered. In the sequel, we will also not develop high order methods, but instead
look at the effect of the application of Quasi-Monte Carlo methods to Runge Kutta algorithms
for delay differential equations.

By approximating the retarded value by the past values of the solution, we can directly insert
this interpolation function
ot — T(t)), if t — T(t) <ty

(5.10)
P, (t—7(t); (yi),(y.)) otherwise

z(t) = “(yi)i<n (t) =

into the differential equation and arrive at an ordinary differential equation

y'(t) = ftyt),y(t —7(1) = f(t,y(t), 2(t)) = g(t,y(t)) - (5.11)
Applying the RKQMC methods for ordinary differential equations (equation (5.6) or [17, 52,
50]), we can approximate a solution of the delay differential equation.
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5.3.2 The RKQMC schemes for DDE

In the sequel, we will use a notation which is independent of the Runge Kutta scheme and
only where necessary use scheme-specific results. We furthermore assume h,, < 1 for all n.
Using the notation of [50], the exact value y(¢,+1) is approximated by the s-order Runge-Kutta
(Q)MC scheme as:

1

Y(tnt1) = y(tn) + W‘%—l

/ Go (@ y(t)y(t <)) du+ oy (5.12)
(tn7tn+1)s

where G is the differential increment function of the scheme, and ¢, is the local truncation
error. This integral is then approximated by Quasi-Monte Carlo integration and interpolation
of the retarded argument as

h ~ /o
T 0<j<N

where G (t; y; (yi)i<n) := G <t; Y5 Z(y:)icn ()) denotes the function G5 with the retarded values
interpolated from the points (v;);,,- )

For the first-, second- and third-order RKQMC schemes of Lécot and Koudiraty, the corre-
sponding functions G are:

G (uwsy;2(4) = f (w9, 2(u — 7(u))) (5.14)
Go (W y;2(-)) = f (a1, y, 2(a1 — 7(u1))) + lf(ﬂmy,z(% —7(t2))) +

) < (5.15)
+ Ef (t2,y + ahy f (G, y, 4y — 7(t1)) , 2(U2 — 7(U2)))

Gs (ﬁ;y; Z()) - alf(alayv 2(@1 - T(ﬂl)))+
Lo

+ Y asif (2, y + baghn f(ur,y, 2(0 — 7(W))), 2(w — 7(w1))) +

— (5.16)

L3
+ > asy (i3, + b5 Ao f (i1, 2 — 7(a)) +
=1

+b§l)hnf (a2, yn + Cg,lhn(l_u, Yn), 2(ug — 7(u2))) , 2(11 — 7'(17,1))>

The condition on « and S is é + % = 1, and the conditions for the coefficients in G3 can be
found in [50].

5.3.3 Convergence proof

In the convergence proof we will use the following definitions for the Runge Kutta error 4,
the QMC approximation error d,, the interpolation error 7, and the local truncation error

En:
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ey R IR E AR | P
n nsin+

- 1 5
- s () ) — i; ), 1
i stV 0<j<N ¢ <t],n,yn, (yl)lgn) slh /(tn,tn+1)s G (u, Yn> (y’)zﬁn) du (5.18)
1 -
= i Dien ) — G (i < 1
i S5 (1) {GS (u7y(tn), (yl)ZS”> G (@ y(tn) y(t < t"))} du (5-19)
toe1) —y(ta) 1 i
iz Yntt) ~9ln) 1 [ Gyt < ) du (5.20)
hn UG it i)’

Since the interpolation does not explicitly depend on the RKQMC scheme used, we can give
a general bound for the interpolation error 7,:

Proposition 5.1. If Gy is Lipschitz continuous in its second and third arguments (with Lip-
schitz constant Lo), the interpolation is chosen such that the interpolation error is of order p,
and the interpolation is Lipschitz continuous in the sense that G fulfills

|G (65(8)s (s, v1)isn) = G (6, 9(8)s (wi, w)icn)

| < £y max [[o; — wi (5.21)

for vi,w; € B(y(ti),p), p >0 and t < t;+ h; for all i < n, then the interpolation error n, is
bounded by

/

L
Il < 52 (max s + 52 (522
with constants £, = max (L, Ly) and K > 0.

Remark 5.1. Without loss of generality, we do not need to include the values of the derivatives
at the right hand side of assumption (5.21), since they are calculated by the delay differential
equation itself. The Lipschitz-continuity of G in general demands the Lipschitz-continuity of
f(t,y(t),y(t—7(t))), so that the difference in the derivatives can be bounded by the difference
of the function values using this Lipschitz-continuity.

Proof. Adding and subtracting the term Gs(u, y(tn); 2(y(t:)),<, (1)) to the integrand of the

definition of 7, and using the Lipschitz conditions on G4 and G4 yields the result

o
Il < e ((Coma s = el 3+

+Lo / max
(tn tn41)® 1sj<s

Z(y(ti))i<n (uj —7(uy)) — y(u; — T(“j))” du) <
/
< £ (maxlenl + K007)
s! i<n
0

Theorem 5.2 (Convergence of the RKQMC methods for DDE). Let G, be Lipschitz
continuous in its second and third arguments with Lipschitz constant Lo and of bounded vari-
ation in the sense of Hardy and Krause. Let furthermore the RKQMC method be chosen such
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that for an order p > 1 there exist ¢1(h) = O(1), ca(h) = O(1) and cs(h) = O(1) with

lenll < c1(hn)hf, (5.23)
16 < c2(hn) llenll (5.24)
ldnl < e3(hn) DN () (5.25)

where S = (X1,...,XN) is the point set used for the QMC integration. If the retarded values
are interpolated by a g-order method, and the assumptions of Proposition 5.1 are fulfilled,
then the error ||e, 1| of the corresponding RKQMC method for delay differential equations is
bounded by

tn (024’%) _

C2+%> + €
L
co+ 3

1 L
leall < fleoll ¢ %ﬂ%@}%ﬁMm+qH%, (5.26)

where H = maXp<i<n—1 hl and C; = MaxXp<j<n—1 Ci(hj) = CZ(H)

Remark 5.2. If the RKQMC method used is convergent for ordinary differential equations,
the existence of ¢1(hy,), c2(hy,) and c3(hy,) is ensured since this is the most important part of
the convergence proof for ODE. For this reason, we will not try and give the assumptions of
theorem 5.2 in a more fundamental way. Inequality (5.23) states that the RK method is at least
of order p and inequality (5.25) is basically a consequence of f and thus G being of bounded
variation in the sense of Hardy and Krause, so that the Quasi-Monte Carlo integration error
can be estimated by the famous Koksma-Hlawka inequality.

Proof of theorem 5.2: Combining the methods of [50] and [55], the error e, = y, — y(t,) of
the scheme can be written as

ent1 = Ynt1 — Y(tnr1) = {yn —y(tn)} +
h 1 ~ /- 1 -
— = Gs tin: Yn, (Yi); — 3. Gs W; Yny (Yi); d
I Y 2 <a, Yns (y ),gn> m /(tmtnﬂ)s (u Yn, (y )z§n> u g+

0<j<N

;_1 /(t - {és (ﬂ; Yn; (y@-)ign) ~ Gy <ﬂ;y(tn), (yi)i§n>}du+
nyln4-1

s\hs,
1 / N
T s_1 G W Y(tn)s (Yi)i<n — G (U y(tn), y(t <ty du—
T o G (890 (i) = G @su(ta) (e < )}
— hnén -

And so

lent1]l < ||€n+1and = |lenll + hn ldnll + Ao l[6nll + R [0l + B llenll
< llenll + hnc3(hn)D}kV(X) + hpea(hn) [lenl| + Cl(hn)thrl‘{'

Lo q
o {200 e

c c
< (1 + hy <02 + S—f>> lenllpng + Fn <03D}‘V(X) + S—'ZMH‘] + cal>

Recursively inserting this inequality for ||e||,,,4 into itself, using the inequality 1+ hna < en®

and a telescopic sum finally yield the result. O
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Remark 5.3. One should note that in the proof given in [55], it is assumed that the approxi-
mation formula z(¢) to the retarded values is smooth, and so the set of support points for the
interpolation can only be changed between two time steps. Since the QMC integration needs
the calculation of a lot of points from a large interval, a significant amount of extrapolation
would be involved. However, the assumptions of the RK(Q)MC methods by Stengle, Lécot,
Coulibaly and Koudiraty, and the method presented here do not require the function g(t,y(t))
to be smooth in ¢ any more, but demand only boundedness of ¢ and its derivatives w.r.t. y
for all ¢. This is still fulfilled if we choose the support points different for different values of
t (but always choose the same support points in a finite neighborhood of t), thus avoiding

unnecessary extrapolation.

5.3.4 Convergence of the RKQMC1, RKQMC2 and RKQMC3 methods

For the first- to third-order RKQMC methods, Lécot and Koudiraty proved the following
lemmas under the assumptions that

1. there exist ¢ > 0,p > 0 such that D;'f is measurable for 0 < m < s on the set
E :=Up<i<r [t,min(t + 7,T")] x B(y(t), p) and, for fixed ¢, continuous in y on the open
ball B(y(t), p)

2. and that for every ¢ € [0,7] and every y € B(y(t), p) the m-th derivative D} f(u,y)
is defined for u € [t,min(¢ 4 7,t)] and bounded by HD;”fHE for 0 < m < s, and its
variation is bounded by VE(D’y”f) for0<m<s—1.

Lemma 5.3 (Lécot, [52]). For the RKQMC1 method, if hy, < 7 and [le,|| + hn || fll o - < p,
then

hn,
leall < S 1 fllooe [Py £l o (5.27)
ldnll < [| Dyl .. Nlenl (5.28)
16n]l < V2(F) DN (X) (5.29)

Lemma 5.4 (Lécot, [52]). If for the RKQMC2 method the additional conditions h, < T
and |len|| + (1 + @)hy | flloc < p hold, then with D; = HD;/fH i = 1,2, the following
inequalities hold:

00,&’

h_% 2 2\ _ (2 2
lenll < T2 1 (302 +2) 17 D2+ 2D1)2) = ()02 (5.30)
1 1 1
Jdnl < 5 (14 77 + 7+ a1 ) D el = (1) e (531
6l = 5 (1 o+ o (D + 2VADL) ) VADDR) = (532
= (/) Dy (X) (5.33)

Lemma 5.5 (Koudiraty, [50]). If h, <7 and |le,|| + hnc® ||f| g < p with

1
bgl) + max
' 1<I<Ls

bgl)‘, max |03,1|>

¢ :=1+max | max |by;|, max
’ 1<I<L;

1<I<Ly 1<I<Ls
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hold for the RKQMCS3 method, then there ezist c¢i(hy) = O(1), ca(hyn) = O(1) and c3(hy) =
O(1) such that

llenll < c1(hn)hi) (5.34)
161 < e2(hn) llenll (5.35)
ldnll < c3(hn) Dy (X) (5.36)

Inserting these lemmas in our result from theorem 5.2, one obtains the convergence proofs for
the RKQMC1, RKQMC2 and RKQMC3 methods for delay differential equations:

Corollary 5.6. For the first order RKQMC1 method applied to delay differential equations, if
the past values are interpolated in a way that the assumptions of Proposition 5.1 are fulfilled,
and H < 7 as well as

Dty

D

elPitllc.ctn oo + €

1 /1 .

(5 11l DF + VADDO) 4 H Il < 9
hold with D = HD;fHOOE, then the method is convergent for h, — 0, D% (X) — 0 and
lleo|| — O, and the error is bounded by

e(D+£2)tn —

(D+£2)tn +

1 . 1
leall < lleoll € (VANDR(X) + Ladttt+ L1l D) (537

D+ Lo
Corollary 5.7. For the second order RKQMC2 method for delay differential equations, the
error under the assumptions of Lemma 5.4 and proposition 5.1 is bounded by (5.26) with
cl = c§2)(f), 2 = MaXp<j<n cg)(f, hyn) and c3 := maxo<j<n c§2)(f, hy) with the definitions
from equations (5.30) to (5.32), and thus the method is convergent. Its order is min(2,q), if
a low-discrepancy point set is used with N = O (H_ min(Q’Q)) points.

Corollary 5.8. For the third order RKQMC3 method for delay differential equations, the
error under the assumptions of Lemma 5.5 and proposition 5.1 is bounded by (5.26) with
c§3)(hn), cg?’)(hn) and c§3)(hn) as defined in [50]. So the method is convergent with order
min(3, q), if a low-discrepancy point set is used with N = O (H* min(3"1)) points.

5.4 Computational experiments

We now investigate the effects of the use of Runge Kutta QMC methods compared to con-
ventional Runge Kutta methods at the example of the delay differential equation

y'(t) = 3y(t — 1)sin(\t), fort >0 (5.38)
y(t) =1, for t <0 (5.39)

with A = 2¥ and 1 < v < 16. The exact solutions for different values of v is shown in figure
5.1. As one can see, the solutions oscillate heavily, although their amplitudes get smaller as v
grows. One also has to notice the kink at ¢ = 1 for all solutions, which is the first discontinuity
of 4/(t) due to the initial function not being a solution of the DDE.

In the sequel, if not mentioned explicitly, all calculations were done with a time step of
h, = h = 0.001 for values up to T' = 5, and the past values are interpolated by a fourth order
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Hermite interpolation. To compare the RKQMC methods with conventional Runge Kutta
methods, we use the RKQMC methods presented in the previous chapter, as well as some low
order Runge Kutta Methods (the 4-stage Runge method of order 3 and the 3-stage method
of Heun of order 3). Additionally, we computed the results with Butcher’s 6-th order method
as an example of a high order Runge Kutta scheme. These schemes are discussed in [34] at
great detail, so we will not even give the Butcher tableaus here.

y(®) I |
3 . ) A=2
\\ i oo e A=22
25} L Ca A=23

| | A |
2 \ P I R VR E i A=2"
| e R A=25
1.5 o ,/' ‘.\ , \.‘I "l \.i v \‘/ L AZZG
1 POAMALMANAR by o e e T A:27
77777 _n8
05! A=2
..... A=2°

2| L4 6. 8 10
-05¢ ‘ SR

Figure 5.1: The exact solution of (5.38) for some values of \.

To compare the various methods, we compute the average error

| X
err = e Z; [y(tim) — Yim|
1=

of a method where K and m are chosen such that ¢;,, — ti-1ym = 0.1 and tg,, =T.

We are interested in the convergence order of the RKQMC methods applied to delay differen-
tial equations. In theorem 5.2 and its corollaries 5.6, 5.7 and 5.8, the error bound depends on
the discrepancy of the point set used for the simulation, as well as on the method itself, and on
hy,. If we take N = O(h%), i = 1,2, 3, according to the corollaries we would expect a different
convergence order for the RKQMC1, RKQMC2 and RKQMC3 method. For A\ = 2°, however,
we do not observe any difference with this specific DDE, neither for different orders of N,
nor for the different RKQMC schemes, as figure 5.2 shows (other delay differential equations
show the expected behavior).

A very important question when dealing with QMC methods is how many points to use for
the integration. Taking too many points does not hurt accuracy, but unnecessarily wastes
computing time. On the other hand, if one takes IV too small, the Quasi-Monte Carlo inte-
gration error will not become negligible and thus introduce a bias to the result. If we take a
fixed h, = 0.001, A = 2° and just increase the number of points, figure 5.3 shows that values
of N larger than about 2° = 512, cannot noticeably improve the error any more, because
then the Runge Kutta and the truncation error outweigh the Quasi-Monte Carlo error. One
can also notice that with low-discrepancy sequences like Sobol’s sequence, which we used for
all our calculations, the curve is much smoother than with pseudo-random numbers as used
in Monte Carlo methods. This is presumably caused by the good distribution properties of
these sequences, and can improve the error considerably below the Monte Carlo error.
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RKQMC1 N=O(h,)
_______ RKQMC2 N=0O(hp)
............. RKQMC3 N=0O(hy)
o RKQMC1 N=O(h2)
—-— = RKQMC2 N=0O(h?)
— - —-— RKQMC3 N=0O(h?)

RKQMC1 N=0(h?)
,,,,,,, RKQMC2 N=0O(h3)
,,,,,,,,,,,,, RKQMC3 N=0O(h?)

Log,(err)

-Log,(10 hp)

Figure 5.2: Error for N = O(hy,), N = O(h2) and N = O(h). (A= 32)

Log,(err) —— RKQMC1 Monte Carlo
RKQMC2 Monte Carlo
RKQMC3 Monte Carlo
RKQMCL1 Sobol
RKQMC2 Sobol
RKQMC3 Sobol

Figure 5.3: With fixed h,, and increasing N, there is no visible difference in the convergence order
(A =32).
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As Stengle [66] pointed out, the RK(Q)MC methods need a lot more evaluations of f, and
thus can only claim advantage if these calculations can be carried out in parallel. Additionally,
the RKQMC methods might even outperform conventional high order Runge-Kutta schemes,
or calculations with a much smaller h,. The results of Stengle, Lécot and Koudiraty show
that their RK(Q)MC methods only gain advantage for differential equations where f varies
significantly faster in ¢ than in space. Figure 5.4 and table 5.1 show the error for the various
methods for different values of v in A = 2”. The time steps are h, = 0.001 for the Butcher,
Runge and Heun method, and A, = 0.01 for the RKQMC methods. While for small values
of A the conventional Runge Kutta methods clearly give better results than the randomized
Runge Kutta schemes, for high values of A\ the situation changes, and the RKQMC schemes
(which are low order methods) at least reach the same or a better average error than even
the high order Butcher method.

Log,(err)
2 4 6 8 10 12 14 -0 (1)

—20 7 ———  Butcher

4 SO Heun

el NN T Runge

e ———— RKQMC1, N=1000
16 RKQMC2, N=1000

,,,,,, RKQMC3, N=1000

-2 v N RKQMC3, N=100

- RKQMC3, N=10

Figure 5.4: For rapidly varying DDE (A > 2'°) RKQMC methods outperform conventional high
order Runge Kutta schemes.

Butcher Runge RKQMC1 RKQMC2 RKQMC3 | RKQMC3

A | | N = 1000 | N = 1000 ‘ N = 1000 ‘ N =10
21 —10.6663 —10.4277 —8.31395 —8.31394 —8.31389 —1.57259
22 —8.20716 —8.04143 —4.83919 —4.83909 —4.83908 —1.0597

23 —10.7767 —10.5397 —7.97728 —7.97651 —7.97628 —2.42371
24 —7.84711 —7.62639 —4.69098 —4.69087 —4.69086 —3.41549
25 —8.11869 —7.89766 —5.05594 —5.05595 —5.05624 —4.13132
26 —9.35768 —9.14174 —7.10261 —7.10411 —7.10611 —5.23092
27 —8.40319 —8.17748 —4.9544 —4.95436 —4.95707 —4.95889
28 —12.303 —11.9188 —5.54122 —5.55782 —5.55972 —5.92666
29 —7.95694 —7.73868 —8.4076 —8.37118 —8.40286 —8.30661
210 —8.0165 —7.80652 —8.75515 —8.66781 —9.17772 —5.1714

211 —8.24265 —8.05737 —9.69635 —9.12556 —9.17449 —6.22673
212 —9.09544 —8.88462 —10.0774 —10.1313 —9.89475 —3.20923
213 | —10.3594 —9.72112 —10.2139 —10.2555 —10.2228 —9.58793
214 | —10.7523 —10.4912 —10.8732 —11.0333 —11.1829 —5.65672
215 —9.96253 —8.92665 —12.6424 —12.5296 —11.396 —4.90893
216 | —10.956 —8.4328 —9.28126 —10.7504 —11.8211 —3.4884

217 —8.85172 —9.77356 —9.94702 —10.4492 —9.48664 —5.50948
218 —8.80146 —8.58722 —11.3812 —10.3786 —10.1079 —6.2911

Table 5.1: Error for increasing parameter values A (h,, = 0.001 for Butcher, Runge and Heun, and
hy, = 0.01 for RKQMQC)
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5.5 Conclusion

In this chapter we showed that the randomized Runge Kutta schemes as proposed by Stengle,
Lécot, Coulibaly and Koudiraty can be successfully extended to delay differential equations,
and for rapidly varying differential equations even the low order RKQMC methods lead to
an improvement over conventional (high- and low-order) Runge Kutta schemes. Although
the RKQMC methods need several times more function evaluations than its Runge Kutta
counterparts of the same order, the possibility of parallel computing and the fact that the low
order RKQMC methods even outperform high order Runge Kutta schemes for certain types
of delay differential equations, make the RKQMC methods for delay differential equations a
viable solution method.
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Starting from the results of the previous chapter, we will now extend the RKQMC methods
for DDE with one retarded argument to delay differential equations with an arbitrary number
of such delayed arguments. The restriction to a finite number exists only for practical reasons
(to ensure an implementation on a computer is possible). The convergence proof will use an
arbitrary Volterra functional equation, only with certain conditions to ensure the convergence.
Finally, an extensive numerical investigation is carried out.

The results presented in this chapter are a joint work with R. Tichy and were published in
[47] and [48].

6.1 Introduction

When dealing with real-world problems, the change of a process y(t) and thus the derivative
y'(t) in its mathematical representation often not only depend on the value of the process
at present, but also on the past values. The differential equations describing such processes
are usually called delay or retarded differential equation, since they also involve terms of the
form y(t — 7(t)), where 7(t) is a function with positive function values, the simplest being a
constant retardation y(t —7) with 7 > 0. In the previous chapter we looked at a class of delay
differential equations with one retarded argument of the form

() =f(tyt),yt —7(1), fort=to, (6.1)

where the solution y(t) is a d-dimensional real-valued function, 7(¢) is the continuous delay
function, which was assumed to be bounded from below by 79 > 0). Furthermore, ¢(t) is the

68
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initial function, which is piecewise continuous at least on the interval (inf;,</(t —7(t)), o).
The analysis there was restricted to the case when 7(¢) fulfills the condition t; — 7(¢1) <
to — T(tg) for t1 < to.

6.2 Description of the problem

In this chapter we will consider Quasi-Monte Carlo Runge Kutta methods for a generaliza-
tion of the delay differential equation (6.1) to an arbitrary (but finite) number of retarded

arguments:
y'(t) = ftyt),yt —n@),....y(t —7(t)), fort >ty k=1, (62)
y(t) = (1), for t <t , '
where the solution y(t) is a d-dimensional real-valued function, 71(t), ..., 7x(t) are continuous

delay functions, which we assume to be bounded from below by 79 > 0. Furthermore, ¢(¢) is
the initial function, which shall be continuous at least on the interval [inf; <; (t — 7(t)), to].
Like in [46], we will sequentially calculate the approximated function values y, at times
tn = to+)_i_o h; for time steps f,. To obtain the values of the retarded arguments y(t—7;(t))
from the sequence (y,,) we will use Hermite interpolation, because the numerical value of the
derivative y/(¢;) at time ¢; is known from the differential equation. The main advantage of
Hermite interpolation over interpolation methods using just the function values is that it only
needs half the points to obtain a given interpolation order.

For f continuous in ¢ and Lipschitz in the other variables, Driver [23] gave a local existence
and uniqueness theorem for a very general Volterra functional delay differential equation,
which contains (6.2) as a special case. In this case, the existence theorem reads:

Lemma 6.1 (local existence and uniqueness, Driver [23]). Let f be (i) continuous in t

and (i) locally Lipschitz in the other arguments y(t) and y(t — 7(t)), and the initial function

¢(t) continuous on [o, to], where o = inf >y (t — 7;(t)). Then for sufficiently small h > 0
1<j<k

<<
there exists a unique solution y(t;to, ) to the differential equation (6.2) for a <t < ty+ h.

Remark 6.1. One should notice that while the RKQMC methods might still be applicable, if
f is not continuous but only bounded and measurable in ¢, this theorem cannot be applied.
However, under hypotheses similar to the ones Stengle assumes in [66, Hypothesis 2.1], Picard
iteration can be applied to assure local existence and uniqueness if f is only bounded and
measurable in ¢.

If f is not globally continuous, however, Hermite interpolation and thus RKQMC methods
for DDE can only be applied, if the solution y is at least piecewise continuous on intervals
which contain p/2 or more support points t;,...,%;,,/2 so that the interpolation error can be
bounded using the interpolation order.

However, even smoothness of f and ¢ does not guarantee smoothness of the solution y(t),
because similar to delay differential equations with one retarded argument (see [55]) the
solution in general will have discontinuous first derivatives at times t§-1) which are defined

as the solutions of the equations t§-1)
Ql) with tﬁ) — Tl(tﬁ)) = t§-1) for 1 < j,1 <k, and so on. On the intervals
between them, a calculation of the exact solution is possible in theory by inserting the already

- Tj(tg»l)) = 0 for 1 < j < k, discontinuous second

derivatives at times tg
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calculated solution from the previous intervals to get rid of the retarded arguments. Thus the
calculation of an exact solution means sequentially solving ordinary differential equations on
each of the intervals, which quickly becomes an analytically intractable problem.

Here, however, we will not be concerned with exact solutions, but with its numerical approx-
imation by means of (quasi-)randomized Runge Kutta methods. We will first present our
RKQMC method, which combines the RKQMC methods by Stengle, Lécot, Koudiraty and
Coulibaly with the Hermite interpolation method for delay differential equations. We will
give a short convergence proof for arbitrary RKQMC schemes applied to delay differential
equations of multiple retarded arguments under certain technical conditions on the delay dif-
ferential equation, the interpolation and the specific RKQMC scheme taken from ordinary
differential equations. A convergence proof for delay differential equations with only one re-
tarded argument was already given by the authors in [46]. The biggest part of the chapter
will be dedicated to an extensive numerical investigation of the RKQMC methods for delay
differential equations.

6.3 The RKQMC method for differential equations with mul-
tiple retarded arguments

Following the path of Stengle [66] as well as Lécot, Coulibaly and Koudiraty (|52, 17, 50],
we will now deduce Quasi-Monte Carlo schemes for delay differential equations with multiple
retarded arguments. These schemes are akin to the family of Runge-Kutta schemes and thus
they are often called Runge Kutta (Quasi-) Monte Carlo schemes (RKQMC in short).

In [50] Lécot and Koudiraty treated the case of ordinary differential equations and derived a
quasi-randomized Runge Kutta scheme. If we assume that we already know the exact or ap-
proximated solution ¢ to the equation up to time ¢ (or at least up to maxj<;<x(t—7%(t)) ), this
solution can be inserted into the right hand side of equation (6.2), and the equation simplifies
to an ordinary differential equation at time ¢ with g(¢,y(¢)) := f(¢, y(t),y(t —71(t)), ..., y(t —
7k(t)). The value of the solution at this time can now simply be calculated by such a Runge
Kutta QMC scheme. For this reason, in the following paragraphs we will repeat Koudiraty’s
arguments which lead to RKQMC methods for ordinary differential equations. Throughout
the whole argumentation, the existence and uniqueness of the solution y(t) with ' € L'(0,7)
needs to be assumed, which in our case is guaranteed by the theorem and the remarks of the
previous section.

Starting from the differential equation y'(¢t) = g(t,y(t),y(t — 71(t)),...) or its equivalent
integral representation

to+h
y(to + h) = y(to) + / gu,y(u),y(t — (1)), ... )du
to
the retarded values y(t — 71 (t)),...,y(t — 7,(t)) are approximated by ordinary Hermite inter-
polation from the already calculated values at the discrete times t,, < t. This is done using

an interpolation function

o(t), if t < tg

(6.3)
P, (t;(vi), (y;)) otherwise

Z(t) = Z(yi)i<n (t) =
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which uses the initial function ¢(t) for all values prior to the starting value. For later times the
function z(t) is constructed piecewise by Hermite-interpolation where appropriate grid points
t, are used as support points and the value of y/(¢,) is approximated by f(t,,y(tn),y(tn —
T1(tn)s -, y(tn — Tn(tn))). The support points to construct the Hermite polynomial for a
certain value of ¢ are chosen such that extrapolation is avoided, and all support points lie
inside the same interval of smoothness as the time ¢. Naturally, it is of advantage to use
adjacent grid points with the value of ¢ in between, so that the interpolation error is kept to
a minimum. Apart from this incentive, the method does not put any further restrictions on
the choice, except that the resulting function g (¢,y(t); z2(t — 71(t)), ..., 2(t — 7,(t))) needs to
be of bounded variation in ¢ to be able to apply the RKQMC methods at all. In contrast to
previous works (e.g. Oberle and Pesch [55]), smoothness in the interpolation function is thus
not required, which would mean that only one interpolation polynomial has to be used for
all interpolation values in one time step. Since our method involves integration over a whole
interval, this would involve an extensive amount of extrapolation, so the possibility to chose
the interpolation polynomial freely according to only the value of ¢ is of vital importance here.
Inserting the interpolation function z(¢) into the delay differential equation transforms it into
an ordinary differential equation, or an ordinary integral equation, respectively:

to+h
o+ ) =u(t0) + [ gluylu). = i), )du (6.4)
0
Starting from equation (6.4), the function g is Taylor-expanded up to order s with respect to
y(t) and recursively inserted into itself. Since this requires g to be s-times differentiable in y,
the function f needs to be s-times differentiable in y. According to the discussion above for
smooth f and ¢ the solution y(t) is also smooth on the interval [to, min;<j 7;). Note that g
does not have to be Taylor-expanded in the retarded arguments y(t — 71 (t), y(t — (1)), ...,
because their values are already calculated via Hermite interpolation.
Using the general identity

U n Uj Uj+n
( f(u)du> :”!/ / Jivn—1) - [(Uign)duiyndui
to to to

this gives [50]

to+h to+h pui
y(to + h) = y(to) +/ Fy(ur;y)du +/ Fy(uy, ug;y)dugduy + ...
to to to
tot+h pur pus—1
+ / / Fs(uq, ..., us;y)dug . .. dug
to to to

1 to+h pto+h
= W/ Gs(ﬂl,as,y)dusdul
S to to

with
Fi(uy, ... uizy) i= DyFyy(uy, .. wi1;y) f(us y(u), y(up — 71 (uq)), .
and Fy(y) := y. Here u denotes the vector u with the components sorted in ascending order.

The function G still contains derivatives of f(¢;y,y(t —71(t)),...) with respect to y(t). Using
a specific identity like the ones proposed by Stengle [66] or Lécot and Koudiraty [50] to
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approximate linear combinations of derivatives of f by Runge-Kutta-like schemes of order s,

one can obtain particular increment functions

Gs(ﬂla ce U y(t)7 y<t - Tl(t))7 cee ay(t - Tn(t)))

which approximate the exact increment function to order h5t!:
és = Gs(U1, .. us;y(t),y(t — 711(1)), .-, y(t — Ta(t))) + O(h8+1) :

As a final step to obtain the method, the remaining integral over [t,to + h)® is calculated by
Quasi-Monte Carlo integration

/to+h/to+hG( ) 1 ZG ((—) > (6.5)
(U1, ... Us;y) = — s [ty 6.5
to to ! N

i=1

Stengle [65, 66] proposed a scheme of second order which uses pseudo-random numbers, while
the schemes proposed by Lécot (first and second order, [52]), Coulibaly and Lécot (second
order, [17]) and Lécot and Koudiraty (third order, [50]) use quasi-random numbers and thus
absolute upper error bound were given for these schemes.

In the calculations presented in this chapter, we will use these existing first, second and third
order RKQMC schemes for the increment function G (¢, y(t), y(t — 1 (¢)),...,y(t —7,(t)) and
not derive our own schemes.

6.4 Convergence of the method

Before we can prove convergence of the method, we have to define it in a more rigorous
manner. For brevity, we will suppress the argument ¢ of the function y whenever it is clear
what the argument is.

We first rewrite the delay differential equation (6.2) in a more Volterra functional equation-like

form
y'(t) = f(t,y(t), 2(1)) t=>to (6.6)
(1) = (Fy)(t)
y(s) = g(s) s < to

where all dependence on retarded values is moved into (Fy)(t). We will furthermore assume
that both F' and f are Lipschitz continuous in all arguments except t.

Our method, which will generate a sequence (y,,) of values that approximate the exact solution
y(t) at the grid points tg < t; <ty <--- < t;,, then reads

N

Yntl = Yn + I, Gs (tn,i§ Yn, é(t))
; 6.7)

Z(t) = (Fy;)(t)
for n > 0, and y; = $(t;) for j < 0. The function (Fy;) uses the interpolation function (6.3)
for the retarded values of y;.
Our goal is now to establish upper bounds for the error |le;j11] = [|yj+1 — y(tj+1)]]. We
will henceforth only use RKQMC methods which converge with order O(hP) for ordinary
differential equations. Following the idea of Oppelstrup [56] for the solution of DDE using
Hermite interpolation, the following theorem proves convergence of our method for DDE:
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Theorem 6.2. Let y(t) be the solution of the DDE (6.6), and (y;),<;<, the approzimate
solution obtained by (6.7) on the grid to < t; < --- < t,. Let furthermore HE(?DEH]. be
the error in the j-th step of the RKQMC method applied to the ODE which uses the exact
PEI| = max; |[EGPP .

solution for the retarded wvalues, and HEg The conventional Her-

; is defined as maxy; <u<;,, (Fy(t))(u) — (Fy(t))(u), and

If

. . . interpol
mite interpolation error HET P

Einterpol

int l
HEZ‘H TP = maxogj<n

J
1. the RKQMC method with increment function Gs(t,,y,) converges with order p for ODE

as hj — 0,

2. G5 as defined in (6.7) is Lipschitz in Z with constant L >0, and F is Lipschitz with
constant Lo > 0,

3. F fulfills a Lipschitz criterion H(Fu])(t) - (Fv])(t)H < Lmax ||uy, — vy with Lipschitz
constant L > 0,

4. the Hermite interpolation has order r,
5. and the initial error ||eg|| vanishes,

then the method converges, and the error is bounded by

Lt (etjﬁ B 1) ODE interpol
Jesoall < llealle2 + &= =1 (1598 1 £, | Eimeri]

Remark 6.2. Like in the case of one retarded argument [46], this theorem shows that the
RKQMC1, RKQMC2 and RKQMC3 methods by Lécot, Coulibaly and Koudiraty ([52, 17, 50])
can be successfully applied to DDE. We refrain from giving explicit upper bounds for the error,
since these are usually very generous and several orders of magnitude (up to 10 orders) above
the numerically experienced errors. For this reason, error bounds as obtained above are useful
to prove convergence, but not to give a good error estimate.

Remark 6.3. Condition 4 puts an effective upper bound on the step size, namely that 5 Points
by woes Lo need to be inside an interval of smoothness as discussed in chapter 6.2.

Proof of theorem 6.2. Using the definition of our method, we get for the error ||e;1]:

N
ej + hy, (@(tj,y()) — Z Gs(tj,i;yj’ 5(75]',2‘)))

lej1ll = ;
=1
where G(t;,y()) = - jf’“‘ g (u,y(w),y(u —71(w)), ... y(u — mm(u))) du is the exact incre-

ment function using the solution y(-) for the retarded values. This leads to the further
estimate
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N
Gty () - %ZGS(%W(%),Z(.))
) N i=1 .
N ;GS(tj,ﬁy(tj),z(-)) - = ZG (55952 ())
N

1 1<
NZG(J“Z/W _NZ (tji3 Y5, 2 ))H

i=1

lejall < llejll + h; +

+hj +

+hy

1 _
< llesll + by [|EGPE|]; + by Z 1Gs(t.6 95, y(4) — Gs(tia 3, 2())l
i=1

where HEgDEHj denotes the error in the j-th step of the RKQMC method applied to the
ODE using the exact solution for the retarded arguments. The error due to the interpolation
can furthermore be estimated by

1Gs(t5,0,y5,2(1) — Gs(tji,y5, 2(8))]] <
< |[Goltiai i 20) = Gty v Zyte,o, O + ]| Gotsis vis Zyuy,oy () = Gty 20))|
< LiLy (

Hy(t))se, () = 2 H)

< L1Lo <HE1nterp01H _|_[, max ”€kH>
0<k<

‘y ) = Zyt)),e, () ‘

using the Lipschitz conditions on the third argument of G5 with constant £; and on F' with
constant Lo.

Since the ||e;|| are monotone increasing, maxo<y<;|lex|| = |le;||. If we now put everything
together, we get

legall < llegll + s BV + kst (LB, + Lesl])
< lesl] <1 +£1£2£~hj> + h; (HE(O;DEH + L1Lo HEintefpolu)

=: He]|](1+£h)+h~c
j
|eo||H (1+ hiL) +CZh IT a+mo) (6.8)

n=0 k=n+1

<||eo||e£21:ohk+cz Lt ol f[ (14 hol) — ~ f[ (14 hot) | =
= 3 3

| A

n=0 k=n+1 k=n+1
— Lt; 9 ! _ Lt; g t; L
= lleoll €< + 7 | [T(1+2al) =1 ) < leof e + 7 (9% = 1)
k=0
~ etjﬁlﬁg[: _ '
_ HGOH eﬁlﬁgﬁtj + ( ) (HEgDEH +£1£2 HE;,nterpOIH) (69)

L1LoL

where in (6.8) the inequality was recursively inserted into itself, and an empty product should
be understood as 1.

From the last inequality (6.9) the convergence of the method is obvious, and it follows that for
a vanishing initial error |leg|| the convergence of the RKQMC method for DDE is min{p, r},
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0
101
0 2 2
0 2 2 4
1 1 3 9 9
101 202 1z 2 1
3 3 1 0 1 3 36 9 12
219 2 5.3 5 35 15
3 3 1 0 0 1 6 144 36 48 8
19 3 1l _noo_1 11
4 4 1 2 1 6 360 36 8 2 10
S Z 0 S
6 3 6 1| -4 2 43 18 32 80
260 13 156 39 195 39
3 5 1 1 4 4 13
200 40 40 25 25 200

Table 6.1: Butcher tableaus (taken from [34]) for Heun’s (third order, 3-step) and Runge’s (third
order, 4-step) classical Runge-Kutta schemes, as well as for Butcher’s high-order scheme (6-th order,
7 step)

where p is the convergence order of the RKQMC method for ODE, and r is the order of the
interpolation error. O

6.5 Numerical experiments

The idea of using Quasi-Monte Carlo integration for the integration over t stems from the
attempt to minimize the error for heavily oscillating differential equations (or delay differential
equations with heavily oscillating solutions, which results in a heavily oscillating ODE after
inserting the solution y(t) for the retarded values). Instead of accepting the (possibly large)
error at just one retarded value, the dependence on t is averaged out, and the error thus
minimized. Since RKQMC methods do not exhibit any advantage over conventional methods
for non-oscillating equations, we will only investigate several heavily oscillating differential
equations.

In our examples we will compare the first, second and third order RKQMC methods with
some conventional Runge Kutta schemes with Hermite interpolation as proposed for example
by Oppelstrup [56] or Oberle and Pesch [55]. In particular, as low-order Runge-Kutta schemes
we applied the well-known 4-stage Runge scheme of order 3 and the 3-stage method of Heun
of order 3, while as a high-order Runge-Kutta scheme we use Butcher’s 6-th order, 7-stage
method as described in [34]. The Butcher tableaus of these classical Runge Kutta schemes
are given in Figure 6.1 for reference.

As a measure of quality of the obtained numerical solutions we will use the sum of deviations
from the exact solution at the times ¢ =0...0.1...20, i.e.

i . (meth),A
Y\10) Y%

and all graphical comparisons on the dependence on A\ will be given in terms of least-squares
fits of the functions {1, x, x2, log(ac)} to the Functions log (S(meth)’)‘). As we mentioned above,

200

SA,(meth) — Z

i=1

: (6.10)
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the RKQMC methods use a sum of N function values of f in every time step to approximate
the integral in (6.5), so a lot more calculation time is needed for a single RKQMC step than
for a conventional Runge-Kutta step. To include this effect into our evaluation, we will also
compare the methods using the least-squares fits to the logarithm of the timed error S, which

we define as
Sj):,(meth) — T)\,(meth) S)\,(meth) , (6.11)

with TA(meth) heing the calculation time for the given method and value of A, so that two
methods, where one needs only half the time, but twice the error of the other, are treated
alike.

Unless we mention it explicitly, all values are obtained with a constant time step of h, = h =
0.001 for classical Runge Kutta schemes, and a step of h = 0.01 for RKQMC schemes. The
simulation is done up to time T" = 20, and a forth order Hermite interpolation is used for the
retarded values y(t — 7x(t)). As low-discrepancy sequence for the numerical integration we
use Sobol’s sequence, where the N numbers for each time step are taken sequentially, i.e. we
use the first Nn elements of the sequence to obtain the solution value at time ¢,.

As a first example of a delay differential equation with two retarded arguments, we applied
our RKQMC methods to the delay differential equation

y'(t) = 3y(t — 1) sin(\t) + 2y(t — 1.5) cos(At), t>0 (6.12)

which is very similar in its structure to the DDE we investigated in [46]. Its "exact" solutions,
which we obtained by a run of Butcher’s high order method using a step size of h,, = 0.00001,
are shown in figure 6.1.

y(®)
3, —— =22

2!

Figure 6.1: Exact solution of example (6.12) for some values of A obtained by a run with very small
step size.
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Logz(s(meth),l)

0
-4 Butcher
_6 Heun
Runge
-8 RKQMC1, N=1000
RKQMC2, N=1000
~10 . -~ RKQMC3, N=1000
_12 — RKQMC3, N=100

— RKQMC3, N=10

Figure 6.2: RKQMC vs. conventional Runge-Kutta schemes for equation (6.12).

Logz(sgrmeth),a)

0
) Butcher
4 Heun
Runge
-6 RKQMC1, N=1000
_8 RKQMC2, N=1000
RKQMC3, N=1000
-10 RKQMC3, N=100
——— RKQMC3, N=10

Figure 6.3: Time-corrected comparison for equation (6.12).

Butcher Runge RKQMC1 RKQMC2 RKQMC3 RKQMC3
A N = 1000 N = 1000 N = 1000 N =10
25 —7.39198 —7.17466 —4.21003 —4.21009 —4.21026 —5.55528
26 —9.12876 —8.91401 —6.63217 —6.63697 —6.63852 —5.05383
27 —9.39176 —9.16272 —5.71178 —5.7132 —5.71862 —5.64201
28 —8.32904 —8.11228 —6.85581 —6.85166 —6.8277 —4.75116
29 —7.28245 —7.05248 —5.54155 —5.53954 —5.53957  —5.63427
210 —8.25863 —8.00724 —6.65457 —6.61329 —6.76324 —4.56086
211 —7.65107 —7.45674 —8.69076 —8.28356 —8.43429 —6.29302
212 —8.31722 —8.08087 —9.05153 —8.95747 —8.85853 —2.83075
213 —9.70187 —9.80577 —9.45962 —9.49673 —9.4834 —8.92099
214 —10.5467 —8.91969 —11.3958 —11.477 —11.7516 —5.78229
215 —9.90117 —9.0376 —12.5316 —11.4426 —10.1873 —5.38535
216 —10.6722 —8.91812 —9.03928 —10.7756 —10.0035 —2.928
217 —9.77875 —9.56794 —9.40501 —9.2114 —8.78821 —4.24964
218 —7.38222 —7.32184 —10.7567 —11.135 —10.9163 —5.74555
219 —9.57111 —9.9538 —9.1594 —9.72612 —9.10414 —5.56226
220 —10.7389 —9.03267  —12.0962 —12.7167 —13.2895 —6.09049
time (0.5745s) (0.331s) (0.9955) (2.8885s) (9.6575) (0.1075s)

Table 6.2: Error for increasing values of \ in equation (6.12). The last row shows the average time
needed for the method.
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Figure 6.2 and table 6.2 show the results of our calculations for increasing A = ok ,0 <k <20.
As one might expect from the the results in [46], for small values of A, the conventional Runge-
Kutta schemes clearly give better results than the quasi-randomized methods presented here.
However, for values of A above 2!', the RKQMC methods become competitive, and give
better results for A > 12. One has to notice that all three RKQMC methods we investigate
show roughly the same behaviour, although in theory they are of different order. However,
the number N of sample points is of great importance to the numerical result, especially,
taking N too small leads to a large bias in the results. It turned out that about N =~ 1000
evaluations for each time step are enough to achieve a sufficient accuracy of the Quasi-Monte
Carlo integration involved, so we only present results with N = 1000. The comparison above
does not yet include the time needed to obtain the solution, which varies greatly with the
method. If we compare the methods using the time-corrected error St as defined in (6.11),
figure 6.3 shows that — although RKQMC methods need a lot more function evaluations —
especially the RKQMC1 method still can compete with the conventional Runge Kutta schemes
for large values of .

As a second example, we chose the delay differential equation

y(t) = —% <3y (t - %) + 4 cos (y (t - 11())) - 5> +3log(M\)*tcos(\t), t>0  (6.13)

yt) =1, t<0,

which has an oscillating solution with increasing amplitude. Here again, for a slowly oscillating
differential equation conventional Runge Kutta schemes are favorable, while RKQMC methods
gain considerably for heavy oscillations, as figures 6.4 and 6.5 and table 6.3 show.

As a final example, we applied the RKQMC methods to the following delay differential equa-

y’(t)=ﬂ%<y<t—2—%>—y<t—2—%)>, t>0 (6.14)

y(t) = sin(Atm), t<O0,

tion

with the exact solution y(t) = sin(Atw), so the problem does not have discontinuities in
any derivative, since the initial condition is already the solution of the differential equation.
Because the k-th derivative of () can only be bounded by A*, for large A the interpolation
error can also only be bounded by a power of A\. One thus has to expect an exploding error,
and the solution method will be very unstable. An interesting question in this case is if
RKQMC methods — although still obtaining an exploding error — behave at least a little
better than conventional Runge Kutta. Or in other words, can the averaging over the whole
interval [ty, 1) delay the explosion of the error? Figures 6.6 and 6.7 show that while for
conventional Runge Kutta schemes the error increases rapidly already for A > 2!9 (or even
A > 27), the RKQMC methods stay more or less stable until A > 23, and even then the error
is several orders of magnitude smaller than with conventional methods.
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L0g2 (SA,(meth))

0 2}

Figure 6.4: RKQMC vs. conventional Runge-Kutta schemes for equation (6.13).

Logz(S)TL,(meth))

Butcher

Heun

Runge

RKQMC1, N=1000
RKQMC2, N=1000
RKQMC3, N=1000
RKQMC3, N=100
RKQMC3, N=10

02

0 Butcher

o Heun
4 Runge
6 RKQMC1, N=1000
8 RKQMC2, N=1000

- RKQMC3, N=1000

-10 RKQMC3, N=100
- RKQMCS3, N=10
Figure 6.5: Time-corrected comparison for equation (6.13).
Butcher Runge RKQMC1 | RKQMC2 | RKQMC3 | RKQMC3

A N =1000 | N=1000 | N = 1000 N =10
25 —8.87234 —8.88586 —5.71718 —5.71687 —5.71446 —1.63038
26 —9.26313 —9.17274 —5.72643 —5.8531 —5.79093 —1.78973
27 —10.1041 —9.86726 —6.31692 —6.26188 —6.02894 —1.98767
28 —9.95295 —9.79758 —6.80873 —6.24588 —5.80225 0.31842
29 —11.208 —10.7435 —5.94728 —6.03407 —5.95347 0.17748
210 —11.5016 —11.6134 —5.19338 —3.91158 —4.56006 2.86029
211 —10.7611 —8.90505 —5.65698 —3.47692 —5.23753 1.29468
212 —10.6531 —5.24012 —3.95011 —3.41886 —4.53776 3.46736
213 —5.4083 —1.92602 —6.733 —6.71153 —7.15757 —0.33684
214 —2.39403 —2.37575 —3.23562 —3.83238 —4.34481 1.77534
215 —2.04463 —1.2864 —3.86274 —3.65393 —3.62819 2.62794
216 —2.24314 —1.66459 —1.00946 —0.9048 —1.49998 4.49528
217 —1.05771 —0.85625 —1.39275 —0.06356 —0.22052 4.10072
218 —0.42866 —0.42336 —1.11109 —1.2283 —1.71019 3.31797
219 —1.41526 —1.28994 —0.50625 —0.82309 —1.28871 3.3318
220 —1.97097 —0.15265 —2.66799 —3.7689 —3.32669 1.8979
time (0.914s) (0.52s) (1.317s) (3.95155)  (13.1045s) (0.144s)

Table 6.3: Error for increasing values of A in

equation (6.13)
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Logz(SAKmem)) Butcher
20 Heun
15 Runge
RKQMC1, N=1000
10 RKQMC2, N=1000
5 RKQMC3, N=1000

Figure 6.6: RKQMC can delay numerical instabilities in heavily oscillating equations like equation
(6.14).

, h)
Log. (Shmet
92(S7 ) Butcher
Heun
15 Runge
10 RKQMC1, N=1000
RKQMC2, N=1000
5
RKQMC3, N=1000
Figure 6.7: Time-corrected comparison for equation (6.14).
Butcher Runge RKQMC1 RKQMC2 RKQMC3 RKQMC3
A N = 1000 N = 1000 N = 1000 N =10
25 —0.03254 —0.02311 —0.56156 —0.5624 —0.5612 —0.23613
26 1.17245 2.86221 0.02865 0.02788 0.03007 0.33568
27 0.50327 3.21856 —0.57879 —0.59252 —0.61976 1.79124
28 4.34429 4.33091 0.20416 0.21056 0.20644 1.49253
29 4.82238 5.07044 0.13955 0.15332 0.13093 3.3962
210 1.2717 0.44702 0.00626 0.00308 —0.01275 3.98611
211 5.32135 9.6919 0.26602 0.19461 0.13048 4.64482
212 11.5943 14.8719 1.71566 1.68044 1.57747 7.51536
213 11.1378 15.3605 —0.14943 0.06415 —0.02259 7.20202
214 14.1873 15.9873 1.93997 1.99741 1.57252 11.7018
215 14.0843 15.7865 3.05771 3.47916 2.98297 13.5787
216 16.2482 16.7093 6.6045 5.70631 5.35894 14.4304
217 15.4825 16.0032 8.33202 7.58254 7.87936 17.3266
218 16.2581 18.0802 9.70491 8.74674 7.48048 17.3213
219 19.3875 20.7898 11.5075 11.1776 9.60934 17.2286
time | (0.316s) (0.1815s)  (0.669s) (1.977s) (6.4865) (0.07255)

Table 6.4: All errors for equation (6.14). RKQMC methods stay stable for 28 < X\ < 213, where
conventional Runge Kutta schemes become unstable.
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6.6 Conclusion

In this chapter we showed that the RKQMC methods by Stengle, Lécot, Koudiraty and
Coulibaly can also be applied to retarded differential equations. While we already showed
this in [46] for equations of one delayed argument, here we presented a more general proof and
extended it to equations of several retarded arguments. Our numerical investigation showed,
that for slowly varying differential equations, conventional Runge Kutta methods have to be
preferred over RKQMC schemes, but for heavily oscillating equations or solutions, RKQMC
methods can yield better results than conventional schemes. Although the RKQMC schemes
are more expensive as far as computing time is concerned, a larger time step can be chosen.
Furthermore, RKQMC schemes may stay stable in a region where conventional Runge Kutta
schemes already give an exploding error. All in all, RKQMC solution schemes can be viewed
as a good complement to classical Runge Kutta schemes with Hermite interpolation for heavily
oscillating delay differential equations.
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Chapter 7

Quasi-Monte Carlo algorithms for
unbounded, weighted integration
problems
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In this final part of the thesis we investigate Quasi-Monte Carlo methods for multidimen-
sional improper integrals with respect to a measure other than the uniform distribution.
Additionally, the integrand is allowed to be unbounded at the lower boundary of the integra-
tion domain. We establish convergence of the Quasi-Monte Carlo estimator to the value of
the improper integral under conditions involving both the integrand and the sequence used.
Furthermore, we suggest a modification of an approach proposed by Hlawka and Miick for
the creation of low-discrepancy sequences with regard to a given density, which are suited for
singular integrands.

This chapter is based on a joint work [37] with J. Hartinger and R. Tichy.

7.1 Introduction

This chapter is devoted to Quasi-Monte Carlo (QMC) techniques for weighted integration
problems of the form

I= f(x)dH(x), (7.1)
[a,b]

83



Chapter 7. Unbounded, weighted integration problems 84

where H denotes a s-dimensional distribution with support K = [a,b] C R® and f is a function
with singularities on the left boundary of K.

Numerical integration problems of this form frequently occur in practice, e.g. in the field of
computational finance. A typical example is the estimation of the mean of a random variate
X with support R®. In case of variates with unbounded variance Monte Carlo simulation is
inapplicable, but (after a transformation) QMC algorithms might be available.

Let H(J) denote the probability of J C K under H. A sequence w = (y1,¥2,...) is defined
to be H-distributed if for all intervals K C K the following condition holds:

N

. 1

Jim > Xgyn) = H(K).
n=1

For Riemann integrable (thus bounded) functions it is well known that the integral (7.1) can

be approximated by

1
| st - a5 3 )

where (yp,)n>0 denotes an H-distributed sequence. The aim is to establish conditions on
integrands and sequences to guarantee the convergence of QMC techniques for unbounded
weighted problems and to justify the commonly used strategy of

ignoring the singularity.

Furthermore techniques proposed by Hlawka and Miick for bounded, weighted integration
problems are adapted for the unbounded case.

7.2 Preliminaries and basic definitions

Hlawka [40] established the first quantitative error bound for QMC-algorithms on the s-
dimensional unit cube, where H equals the uniform distribution U. To gain a deep insight
in the classical QMC theory we refer to the monographs of Kuipers and Niederreiter [51]
or Niederreiter [53]. Quasi-Monte Carlo algorithms for (Riemann) improper integrals with
regard to the uniform distribution (H = U [0, 1]%) were first investigated by Sobol. In [64] he
dealt with integrands, which are unbounded for zizs - x5; — 0. Asymptotic error estimates,
as well as numerical examples for some special functions were presented by Klinger [49], De
Doncker and Guan [18].

We consider integration problems, which have the following properties

e The improper integral (7.1) on a compact subinterval of R® exists in the sense that the
limes
lim f(x)dH(x) (7.2)
c—a
c>a “lc;b]
exists independent of the ¢, where ¢ > a should be understood component-wise. We

will define this limes as the value of the improper integral.
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e If the integration domain is not a compact subinterval of R?, i.e. at least one coordinate

is unbounded (a; = —o0 or b; = 0o for a 1 < i < s), the limes

lim f(x)dH(x)

c—at Jie,d]

has to exist for every finite fixed upper boundary d € (a,b), ||d|| < oo. Independently,

for any fixed c € [a, b] as lower integration boundary with ¢ > a component-wise, the

limes

lim x)dH(x
Jm [ S

needs to exists. Then we let the lower and upper integration bounds independently tend

to the boundaries of the integration domain K and define the value of the improper

integral as
lim f(x)dH(x).

d—b~
d—b" Jicdl

e The integrand f(x) possibly has singularities at the left boundary of the integration

domain, i.e. limy, .4, |f(x)| = oo for some i € {1,...,s}.

e These singularities are the only singularities of f(x). In particular this means that for

all € > 0 there exists some M < oo, such that |f(z)| < M for all z € [a +¢,b].

Before we recall Hlawka’s integration error bound (respectively a slight generalization for

weighted integration) some more definitions are required:

Definition 7.1. The H-discrepancy of w = (y1,¥2, ... ) measures the distribution properties

of the sequence. It is defined as

Dy () = sup | L AN ()~ HOD)|

(7.3)

where Ay counts the number of elements in (y1,...,yy) falling into the interval J, i.e.

N
AN(J,w) =Y X (yn).
n=1

Definition 7.2. By a partition P of K we mean a set of s finite sequences (j = 1,...

ajzyéj)<y§j)§---§y(j

m

) =b;.

In connection with such a partition one defines for each j two operators by

Ajf(-%'(l), . ,x(j_1)7 Vl-(j),.%'(j—"_l)’ o ,x(s)) _

f(x(l), “,x(jfl),yl(i)l,x(jﬂ), “,x(S))_f(x(l)’ __’x(jfl),yz(j),x(ﬁrl), ._,x(S))
for 0 <i <mj and
Aj»f(x(l), R NP IC AR LSO I

F@®, 20D 0 G0t a6 p0 g7 o g0 )y,

+5);
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Definition 7.3. For a function f on K, we set the variation in the sense of Vitali as follows

mi—1 my—1
VO =sup 3 X (A0l )]
11=0 =0

where the supremum is extended over all partitions P of K. The variation of f restricted to
an interval [a, b] will be denoted Vja 1) (f)-

Finallylet 1 <1<s,1<i; <--- <4 <sand VO(f;iy,...,q) be the Vitali variation of the
restriction of f to the /-dimensional face

{(u1,...,us) € K :uj =bjfor j #ir,...,0}.
The variation in the sense of Hardy and Krause is defined by
S
vin=> > VO, (7.4)
=1 1<i1 <--<i;<s
Naturally f is called of bounded variation on K, when V(f) < oo.

Theorem 7.1 (Koksma-Hlawka Inequality). Let f be a function of bounded variation
(in the sense of Hardy and Krause) on K and w = (y1,¥2,...) a sequence on K. The QMC
integration error can be bounded by

N
[ £60dHE) = 5 3 )| < V(Do) (7.5

n=1

A proof of this central theorem can be found e.g. in [51] for the uniform distribution, and
in [70] for general distributions H (using a slight specialization to variation in the measure
sense).

In [64], Sobol looked at Quasi-Monte Carlo integration of singular functions with respect to
the uniform distribution. He gave conditions for its convergence involving the function as well
as the sequence used. In particular, his theorem reads:

Theorem 7.2 (Sobol, [64]). Let i C {1,...,s} and Ky be the boundary of [0,1]° where all
coordinates V) = 1 fori ¢ i'. Let furthermore c < cy, where cy = minj<, <y <xf}), e ,xff)>,

and Gy the part of Ky, where () ... 20i) > ¢ If for every i the integral

/ 20 ()
Ky

D%(ml,xg, e ) /
G,i(c)
then Iy o0 & Yy f(@n) = [y f(2)dz.

In this paper we will generalize this result to weighted integration, which means integration

f@’)(x(i’))‘ dz) (7.6)

converges and

f@')(m(i'))‘ dz®) = o(1) , (7.7)

with respect to arbitrary densities h(z). We will also investigate several ways to construct
the sequences needed for QMC integration w.r.t. arbitrary densities and propose ways to
overcome some problems occurring in conventional methods.
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7.3 The one-dimensional case

Let us first consider the one-dimensional case. The main theorem of this section generalizes
and combines the Koksma inequality (7.1) in one dimension with Sobol’s convergence theorem
[64] for QMC integration of singular integrands. Instead of the uniform distribution, we will
assume an arbitrary distribution H(x) on [a,b] and show convergence of the QMC integration.
The multi-dimensional case will be treated in a similar manner in the next section, so we
present the simpler one-dimensional case here to give a clear picture of the ideas.

7.3.1 Convergence theorem

Definition 7.4. For a sequence w = (y1, 92, ...) let ¢y = minj<,<n yn be the smallest value
of the first N elements of the sequence.

Theorem 7.3. Let a < ¢ < cy. If a sequence {y;},c and a differentiable function f(x) on
[a, b] with a singularity only at the left boundary satisfy the condition

b
Dyr(w) [ 17/@)]dz = o(1) (79)

as well as cy — a for N — oo , then the QMC estimator % 25:1 f(yn) converges to the
value of the improper integral of f(x) on [a,b]:

N b
1
lim — = i
Jm DS | rwata (79)
Remark 7.1. For non-differentiable functions the condition is similar using the variation
View »)(f) instead of the integral of the derivative. The multidimensional case will be for-

mulated in such a more general manner.

Proof. To prove (7.9) we will approximate fcb f(z)dH (z) with + ZnN:1 f(yn) and show that
the remaining terms tend to zero. Without loss of generality we can assume the sequence to
be sorted, and we define yy and yy41 sothat c=yp <y1 < -- <yny < yny1 =0>.

First, we establish an identity similar to Lemma 5.1 of [51]:

= b b An(le,x),w
%nzzllf(yn)—/c f(rr)dH(a:)zH(c)-f(b)—/c (% —H([e,)))df(x)  (7.10)

The above identity can be proved by inserting terms, applying integration by parts and using
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the fact that H(z) is a distribution function on [a, b].
1 b
v ot = [ s@an

1 & o [P
. Y flyn)—(1=H(e)) f(b) + [H(z)—H(c)] f(z)]; —/ f(z)dH (z)
n=1 c

N
n

—flyni1) = Y ~ S nr1) = fyn)

n=0
b
_FO) + HOFD) + / H(z) - H(e)] df (2)
N n+1 n b
=3 [ pdrw) + w50 + [ 1) - HE )
n=0"Jn ¢

b C, T w
o)) | (AT p (e, ) df ()

Once this is established, the convergence is obvious:

N b
SONIEY FOTE

<

b
HHENO)]+ Dya@) [ | @) do

/ ' f(@)dH ()

According to the convergence of the improper integral on the whole interval, the first and
second terms tend to zero as ¢ — a, and the condition of the theorem ensures that the third
term is o(1) and thus also tends to zero. O

Remark 7.2. The minimal element cy of the one-dimensional Halton-sequence in basis 2
(which coincides with the Faure and Sobol sequences) is larger than 1/2N. In arbitrary bases

p, the smallest element among the first NV can be bounded from below by 1/ pllogy NI+1,

7.3.2 Generating suitable sequences

The main drawback, from a practical point of view, of the preceding theorem is the lack of
sequences with low H-discrepancy. In practical issues one has to generate these sequences
by transformation from uniform low discrepancy sequences. For distributions, where explicit
inverse distribution functions are available, the transformation of the uniform distributed
sequence (z1,2,...) by an inversion method y; = H~!(x;) is obvious. This transformation
preserves the discrepancy, i.e

DN ($15$2a"'):DN,H(ylayQa"')' (711)

Unfortunately for most distributions the inverse distribution function is not given explicitly
and direct numerical methods for the inversion are often inefficient.

In [43], Hlawka and Miick propose a systematic method for constructing H-distributed se-
quences, which just uses the distribution function but not its inverse. We focus on the case
K =[0,1].
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Definition 7.5. Let w = (z1,x2,...) be a sequence in [0,1) with discrepancy Dy (w) with
regard to the uniform distribution. The sequence @ = (1, J2, . . . ) is defined to be the sequence
consisting of the points

N 1 N
i = ZU tap—Hz)] =+ D Xioay (H(z)) (7.12)
r=1 r=1

Lemma 7.4. Let the sequence © be defined by Eq. (7.12) and M = supyecjo11h(v). Then the
H-discrepancy of @ can be bounded by the following inequality

Dy (@) < (1+ M)Dy(w).

All points constructed by the Hlawka-Miick method are of the form i/N, (i = 0,...,N), in
particular, some elements g of the transformed sequence @ might assume a value of 0. Since
this is the singularity of f(z), according to Theorem 7.3 these sequences are not directly suited
for unbounded problems.

Definition 7.6. To overcome this problem, we define the sequence w for ¢ = 1,...,N as
follows:
YUe=9, ... (7.13)
~ ify=

Theorem 7.5. The H-discrepancy of W is bounded by

Dy (@) < (M +1) (DN(w)—i—%).

Proof. Let (Z1,Z2,...) and (Z1,2,...) be the sequences obtained by z; = H(y;), resp. &; =
H(y;). By Eq. (7.11) it is sufficient to estimate the uniform discrepancy of (z1,Z2,...). For
uniform discrepancies the following fact is well known (e.g. Niederreiter [53]): Let (u1,us,...)
and (v1,ve,...) be two sequences in [0, 1] with discrepancies D1 and Do, then | Dy — Ds| < ¢,
whenever max;<;<n |u; — v;| < .

Now, the calculation
|2k — Z| < g — Tl + [T — Ty
Uk Uk 1
/ h(t)dt' + / h(t)dt‘ <M (DN(.%'l,.%'Q,...)-l-—) .
Yk Yk N

completes the proof. O

Remark 7.3. The discrepancy of uniform low discrepancy sequences is typically of the order
(’)(longN ) (resp. O(+) for nets). Therefore the additional factor (1/N) one inherits though
the shift (7.13) does not affect the asymptotic behavior of the integration error.

Remark 7.4. Another method to avoid the inversion can be obtained by a suitable integral
transformation. With the help of such a transformation, in Monte Carlo algorithms often
referred to as importance sampling, it might even be possible to avoid some singularities.
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7.4 Multivariate singular integration

We will now look at arbitrary-dimensional integrals
f(x)dH(x) , (7.14)
[a,b]
where the integration domain is taken as a compact subinterval [a, b] of R*.
Remark 7.5. This is no restriction: If any of the dimensions is unbounded, we can first carry

out the calculation on compact intervals and then take the limits to infinity as indicated in
Section 7.2.

7.4.1 Preliminaries

The notations and operators used in the sequel are defined in Section 7.2. In addition we
*
need the summation symbol E :

Definition 7.7. Given an expression F depending on variables z(, ...,z and a par-
tition of N, s = {r,r + 1,...,s} into two subsets L = {2() ... 2} and N, \ L =
{aUe+1) . zls=r)) we use the notation

F(L) =F <x(ll)7 e ,x(lp)’ x(lp+1)7 . ’x(lsfr)) )
The summation operator Z* is defined as the sum over all elements of the set P, = {L C

N, s :card(L) = p}, ie. .
Y F=)> F(L).

LETERIE Y 4 LGPp

The integration by parts formula used in the proof of the previous section for differentiable one-
dimensional functions can be generalized to arbitrary s-dimensional functions. It is commonly
referred to as Abel’s summation formula:

Lemma 7.6 (Abel’s summation formula, e.g. [51]). Let f(x) and g(x) two functions on
[a,b], and let <77((]]),77§]), ,7],(%3) and <£((]J),£§J),...,§,€,]L3) with 7 = 1,...,s be two partitions
of the interval [a,b]. Then

mi1—1 ms—1

DY f(@(lllp--w’fml)A <772(1), ..,ng))

11=0 15=0

S mi—1 mp—1
=> (-1 Z Arits D28 <ml, --,m(f) (p“),...,x(s))
p=0 1,...8p 11=0 1p=0

X Alv 7pf <£Zl e g(p ? p+1 7x(8)> . (715)

For a proof of this important equation we refer to the monograph [51] of Kuipers and Nieder-

reiter.
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7.4.2 Convergence theorem

Using Abel’s summation formula (7.15), we can now prove the convergence of the s-dimen-
sional Quasi-Monte Carlo estimator to the value of the improper integral (7.14), even though
the integrand can be singular on the whole left boundary of the integration area. Conventional
methods usually apply the Koksma-Hlawka inequality (7.5). Here this inequality does not give
an upper bound for the integration error, because the singularity causes the function to be
of unbounded variation on [a,b]. We only require the function to be of bounded variation
on every compact subinterval of (a,b]. The proof will follow the lines of the proof of the
Koksma-Hlawka inequality given in [51], so for some parts of the proof we just refer to that
book.

Theorem 7.7 (Convergence of the multidimensional QMC estimator). Let f(x) be
a function on [a,b] with singularities only at the left boundary of the definition interval (i.e.
f(x) — +o0 only if zU) — aj for at least one j), and let furthermore cy; = minj<,<n yﬁlj)
and a; < c; < cn,j. If the improper integral (7.14) exists in the sense of Section 7.2, and if

Dy, (w) - View)(f) = o(1), (7.16)

then the QMC estimator converges to the value of the improper integral:

lim —Zf (¥n) / f(x)dH(x) . (7.17)

N—oo N
Proof. Like in the one-dimensional case we estimate the integration error on the interval [c, b],

where the function f(x) is regular for any choice of ¢, and show that the remaining terms
vanish as ¢ — a. Again similar to the proof of Theorem 7.3 we use a function

9(x) = o A(e.x) ) — H(le. %)) (7.18)

for a given sequence w = (yp G )) 1<n<N,1<j<s. One has to notice that this function
is merely the function used in the definition of the discrepancy, so that supyciep) [9(x)| <
Dy p(w).

Using a double partition ¢; = f(] = 77 () f(] < 77( D <

<77mj Em +1 =bj(j=1,...,s)
of the interval [c, b] with the additional condition that the 51 ,...,fmj contain at least our

sequence w, we now apply Lemma 7.6 to the function g(x). As argued in [51], the left hand
side of Eq. (7.15),

mi1—1 ms—1

S () A g (n ).

i1=0 is=0
can be simplified to

m1—1 ms—1

Z Z f (§@1+1a-- §@S+1> s <® [Clﬂ?z(l)>>7 (7.19)

Zl =0 Zs =0

1
LHS = —
S=N

Tk
K&

where ® denotes the Cartesian product.
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For the right hand side we notice that g(x) = 0 if any of the 200) = ¢;. Also, g(b) =
1 — H ([c, b)), so that the summand of p = 0 can be simplified as

A7 oo (20, ) f(aW, 2 )) = g(b) (). (7.20)

Similarly, for 1 < p < s, only terms with z®t1) = p+1,...,1:(5) = by contribute (if any
2P+7) = ¢, ;. the function value of g(x) vanishes):

IRHS| < |g(b |+Z| IZ Z Z‘g(nzw'“’%))‘

1,..,85p11=0 15=0

Lond (6050062 by, ) (7.21)
< ‘g ‘ +Z Z DNH wp+1 )V(p)(f(af(l),...,x(pil),bp_ﬂ,...,bs).
p=11,.,
with wpy1, s denoting the projection of the sequence w on the upper boundary of [a,b] so

that the components 7,,1,...,17s are set to blirt1) . ps) and the discrepancy is computed

on the face of [a,b], in which w11, is contained.

-----

Since the second term in Eq. (7.19) is nothing else but a Riemann-Stieltjes sum to the integral
f[c b] f(x)dH(x), and the rest is independent of the double partition, we let the mesh size of
the double partition tend to zero

max max (772(_]21 nZ(J )) 0

1<j<s 0<i<m;
to obtain the multidimensional version of Eq. (7.10):

1 N
= F )= [ FdH()
n=1

o <[(1=H(le,))) f(b)| + Dy (@)] - [View) (£ (7.22)

The existence of the improper integral in the sense of Section 7.2 guarantees that

f(x) dH(x) — f(x) dH(x)

[a,b] [e,b]

Lyest :=

tends to zero as we let ¢ — a. Thus, we have

+ I rest

1 N
NZf(Yn)_ f(X)dHX
n=1

[a,b]

1 N
<y fe- [ dEX)
n=1

[c;b]

< [[1 = H([e,b))] f(b)| + Dn .1 (w) - Viep) (f) + Trest - (7.23)
For N — oo and so ¢ — a, the first and third terms obviously tend to zero, while the conditions
of the theorem guarantee this also for the second term. Thus the proof is finished. O
7.4.3 Generation suitable multi-dimensional sequences

As in the one-dimensional case, one faces the problem of generating H-distributed sequences.
Multidimensional versions for inversion methods are well known (e.g. Devroye [22]). Under



Chapter 7. Unbounded, weighted integration problems 93

weak, Lipschitz type conditions, Hlawka and Miick [42] showed the following bound for the
H-discrepancy of sequences @ generated by multidimensional inversion methods:

Dyu(@) < ¢(Dy(w)"?, (7.24)

where w denotes the original uniformly distributed sequence. Furthermore in [42] a multidi-
mensional approach similar to Eq. (7.12) is given.

We again focus on distributions on [0,1]° and specialize our analysis to distributions with
independent marginals, i.e. H(x) = [[;_; Hi(z®).

In this case one can transform each dimension separately by one-dimensional inversion meth-
ods and improve the bound (7.24) similar to the one-dimensional case to

Dy (@) = Dy (w). (7.25)

Hlawka [41] suggested to apply the construction (7.12) to every dimension individually to
avoid an inversion of Hi,..., H; and gave a bound on the H-discrepancy of sequences w
generated by this procedure:

DN’H((D) < (1 -+ 38M)DN((,U),
where M = sup h(x).

Similar to one dimension, Hlawka’s method might lead to sequences, which are not suited
for unbounded integrands. Our final theorem shows a modification, which leads to QMC
estimators for a wide range of functions. Before we can state it, we need to recall a lemma,

which will be essential for the proof.

Lemma 7.8 (e.g. [43]). Let Q1 = (uy,...,un) and Qo = (v1,...,vN) be two sequences in
[0,1]%. If the condition
|uz(]) _ UZ'(J)| S 6ja

holds for all 1 < j < s and all 1 <i < N, we get the following bound on the difference of the
discrepancies

|Dn (1) — Dn ()] < J](1+2¢5) — 1. (7.26)
j=1

Theorem 7.9. Let H be a s-dimensional distribution with independent marginal distributions

Hy,...,Hs; and M = suph(x) < oco. Let furthermore w = (x1,x2,...) be a sequence with
(uniform) discrepancy Dy (w) and define the sequence @ = (§1,72,...) by
g = ~ St +al? - Hi@P)),
n=1

forj=1,...,sandn=1,...,N. Then the sequence

(7.27)

min ~i(J) >
1<5<s,1<i<N
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Proof. Let 79 = g Z-_l(gjgj )). Similar to Theorem 7.5 we get the inequality

i

9 — 29 < M (DN(w) + %) .

Using Lemma 7.8 we obtain
1 S
Dn(Z1,%2,...) < Dy(w) — 1+ (1 + M <DN(w) + N)) .

By Eq. (7.25) and the inequality + < Dy(w) < 1 it follows that

M (DN(w) + i)) < (14+4M)*Dy(w).

—_
+

_DN7H(U_)) gDN(w)—1+ < N

7.5 Conclusion

In this article we successfully showed that Quasi-Monte Carlo methods can also be applied to
improper s-dimensional integrals, where the integrand function f(x) becomes singular at the
integration boundary, assuming the function and the low-discrepancy sequence in use display
certain properties as listed in Theorem 7.7. While similar conditions have long been known
[64] for integration with respect to the uniform distribution (i.e. using uniformly distributed
low-discrepancy sequences), we were able to generalize these results to integration with respect
to arbitrary multidimensional densities, often called weighted integration.

In [43] and [41] Hlawka and Miick proposed a scheme to transform a uniformly distributed
low-discrepancy to a low-discrepancy sequence with given density. However, the new sequence
does not in general fulfill the conditions set forth in our convergence theorems and so cannot be
used for the QMC integration of singular integrands. We were able to give a slight modification
of the transformed sequence so that it does not loose its low discrepancy, but can be used for
QMC weighted integration of singular integrands as our convergence theorems show.

We looked at one-dimensional densities and multidimensional densities which can be factored.
Arbitrary multidimensional densities lead to the problem that even the inversion method does
in general not preserve the discrepancy of a low-discrepancy sequence. Therefore the creation
of low- H-discrepancy sequences still poses an open problem, in particular sequences suited
for singular integrands.



Chapter 8

Option Pricing as an Unbounded
Non-Uniform Quasi-Monte Carlo
Integration Problem

Contents
8.1 Imtroduction . .. ... .. ... i ittt 96
8.2 Financial market model. . . . . .. ... ... ... ... ... ... 96
8.3 Weighted Koksma-Hlawka inequality . . . . . .. ... ....... 97
8.4 Transformation by inversion . . . . ... .. ... .......... 97
8.5 Other integral transformations . . ... .. ... .......... 101
8.6 The Hlawka-Miick method . . . . ... ... ... ... ..., 101
8.7 Importancesampling . .. ... .. ... .. ... . 000, 103
8.8 Numericalresults . . ... ... ... ... .0, 103
8.9 Conclusion . ... . .. ... ittt e 107

In various applications in computational finance the implementation of efficient Quasi-Monte
Carlo algorithms is faced with (at least) two non-standard problems. Firstly one has two
create variates of miscellaneous non-uniform variates, i.e. sequences with low discrepancy
with respect to non-uniform distributions. Secondly many integration problems considered in
finance lead to unbounded integrands, so that one has to adapt Koksma-Hlawka’s inequality
to guarantee the convergence of QMC algorithms. The aim of this chapter is to study the
performance of Hlawka-Miick methods (as presented in the previous chapter) in a typical
financial application and compare the convergence behavior with Monte Carlo methods and
algorithms which use integral transformations to avoid singular integrands and the generation
of special variates.

The results presented here stem from a joint work [36] with J. Hartinger and M. Predota.

95



Chapter 8. Option pricing as an unbounded non-uniform QMC integration problem 96

8.1 Introduction

Recently, Hartinger et al. [37] studied Quasi-Monte Carlo integration (QMC) for unbounded,
weighted problems, i.e

f(x) dH(x), (8.1)

(a,b]

where H denotes an m-dimensional distribution with support [a,b] C R™ and f is a function
with singularities at the left boundary of [a, b]. They gave sufficient conditions on integrand-
sequence combinations to guarantee the convergence of the QMC estimates and proposed
adapted Hlawka-Miick techniques to allow integration of functions with singularities at the
integration boundary. QMC integration for singular functions was first considered by Sobol
[64], where he dealt with integrands on I"™ = [0, 1], which are unbounded for x1x5 - - - zs — 0.
Klinger [49] and De Doncker and Guan [18] presented asymptotic error estimates as well as
numerical examples for special functions.
Acceptance-rejection sampling methods (e.g. Devroye [22]) used in most Monte Carlo imple-
mentations for the creation of non-uniform variates are not admissible for QMC-techniques
as they induce discontinuous functions and disadvantageous discrepancy effects (e.g. Jéckel
[45]). To solve this problem, Hlawka and Miick [41, 42, 43] proposed a systematic approach
to generate non-uniform low discrepancy (double) sequences. Since the calculation of low
discrepancy (double) sequences using Hlawka-Miick techniques is computationally expensive
for many distributions, we will finally investigate variation reduction methods to increase the
efficiency of our algorithms.

8.2 Financial market model

We assume a Black-Scholes type model with one bank account B, which compounds contin-
uously with (constant) interest rate r, i.e. B; = Boe" and one stock S, which is driven by a
Lévy process Z; on (2, A, P, F),

Sy = Spe?t. (8.2)

Lévy processes can be characterized by the distribution of Z;. Various models of this type have
been proposed in the last years. Typical examples for the distribution of Z; are hyperbolic (e.g.
[25]), normal inverse Gauss, variance gamma, and Meixner distributions. For a comprehensive
monograph on so-called Non-Gaussian-Black-Merton-Scholes-Theories we refer to [13].
According to the fundamental theory of asset pricing [21], the value C; of an S-derivative at
time ¢ is given by

Cy = e "TDER[Cr(9)|F]

where C7(S) is the so-called payoff of the derivative, which in this setting coincides with
its value at time 7', F; denotes the filtration induced by Z;, and ) stands for an equivalent
martingale measure (i.e. Q is equivalent to P and S; = e "U"DEQ[S|F;] for all I > t.).
Here we always consider the measure obtained by the Esscher transforms (e.g. [32]) as these
preserve the type of the distribution of Z; in our cases.

In the following we consider the the evaluation of so-called (discrete sampled) Asian options,
the simplest type of options, which has to be valued by simulation. The payoff of an Asian
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call is defined by

1 — i 1 —
CT:(RZSti_K> :maX{RZSti—K,O},
i=1 i=1
with 0 <t; <ty <...<t,;, <T. The constant factor K > 0 is called the strike price.

Therefore we get the following integration problem:

m +
So i .
I:/ 2ONT =% K| dH(x), 8.3
- <m ;:1 > (x) (8.3)

p(x)

where H(x) = Hi(z1) - ... - Hpn(xm) and H;(x;) denotes for i = 1,...,m the distribution of
the so-called log returns induced by Z;. It should be observed that we have a problem of the
same type as in (8.1), only that the singularities appear on the upper integration boundary,
i.e. as at least one x; — oo. Furthermore, it will turn out useful that the distribution and the
density functions can be factored into one-dimensional components.

8.3 Weighted Koksma-Hlawka inequality

To recall Hlawka’s integration error bound (respectively a slight generalization for weighted
integration) we need some more definitions:

Definition 8.1. The H-discrepancy of w = (y1,y2,...) measures the distribution properties
of the sequence. It is defined as

1
Dy p(w) = sup NAN(J,CU) —H(J)|,
JCK

where Ay counts the number of elements in (yi,...,yy) falling into the interval J, i.e
An(Jw) = 301 X (Un).

Theorem 8.1 (Koksma-Hlawka Inequality). Let f be a function of bounded variation (in
the sense of Hardy and Krause, see e.g. [53]) on [a,b] and w = (y1,y2,...) a sequence on
[a,b]. Then the QMC integration error can be bounded by

‘ [ oot - N (/)Dw (). (8.4)
[a,b] n—1

For unbounded functions the Hardy-Krause variation is infinite, hence (8.4) does not lead to
an useful bound on the integration error. In the following sections we describe several QMC
algorithms for the problem (8.3) and investigate in how far they are beneficial.

8.4 Transformation by inversion

As for most (even one-dimensional) probability measures the distribution function F' is not
given explicitly, the classical inversion method is in general very inefficient (e.g. if one obtains
F~! through backtracking and numerical integration). Nevertheless if the inverse distribution
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function HZ-_1 or approximations thereof are available, the substitution Hl-_l(l —u;) = x; in
equation (8.3) leads to

m ’ +
/ 50§ i 870w i) du, (8.5)
01 \ "5

f(u)

where the integrand f is still unbounded. To show the convergence of the QMC algorithm we
apply the following theorem:

Theorem 8.2 (Convergence of the QMC estimator, [37]). Let f(x) be a function on
[a, b] with singularities only at the left boundary of the definition interval (i.e. f(x) — +oo
only if x; — a; for at least one j) and w = (y1,y2,...) be a sequence on [a,b]. Furthermore
let cyj = minj<p<n Yn,; and a; < c; < cn ;. If the improper integral (8.1) exists in the sense
of [37], and if

Dot @) View) () = o(1). (5.6

then the QMC estimator converges to the value of the improper integral:

N—oco N — [a,b]

1 N
mn—ZﬂWF f(x) dH(x) .
n=1

To establish the convergence we thus have to estimate the order of cn, the minimal element
of the used sequence, and the variation of f on [cq, 1].

Lemma 8.3. o Let w = (x1,22,...) be a Van der Corput sequence in base p (e.g. [53]).
Then for the minimal element ¢, = minj<;<xn x; hold the inequalities

N1 > CS)V :prlogpNJfl > (Np)il.

e For all (0,m)-sequences (e.g. [53]) with xo = 0 bounds for the minimum
CN = MINI<<N1<j<m Tij

are given by
2> =
N pN

Proof. Let p be the base of the Van der Corput sequence. Then x,, is defined by its p-adic

expansion n =y 2 ag;)pi and z, =Y 2, agz)p_i_l. We have agz)) = 0 for all i > log, n, and

Z(Z)) is strictly positive for i = 1,...,[log,n]. Therefore x, > pUogpm)=1 " with
equality if [log,n| = log, n.
Consider a (0,7, m)-net in base p. Then we have per definition (see e.g. [53]): Any elementary

at least one «a

interval with measure p~' contains exactly one element of the net. For i = 1,...,m the
interval J; = [0, p~!) x [T ;.2:[0, 1] is elementary with A(J) = p~!. The element X lies in all
of these intervals, so no other point x;, (i = 1,...,p') is in the interval J = []*,[0,p~"). Now
let [ = |log, n| + 1. For a (0, m)-sequence the point set x;,0 < i < b’ has to be a (0,1, m)-net.
So ¢, > p~logs =1 The same argument shows that there has to be at least one point in
[p~!,2p~") x [0,1)™~ 1. Thus it follows that ¢, < 2p~ [logy ] —1, O
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The order of the minimal element ¢y of a Sobol sequence was given in [64] by ©(1/N). The
preceding lemma establishes the same order also for Halton and Faure sequences.

Henceforth we will use the notation cn = cy1. Let us estimate the variation Vie 1)(f ). We
denote by H) the one-dimensional double-exponential distribution with parameter A > 1, i.e.
hx(x) = A/2exp(—A|z|). Then

3 log(2z) if z <
—1log(2—2z) ifz>

)

H;l(ac) =

N[—= D=

The variation in the sense of Hardy and Krause can always be bounded by 2™-times the Vitaly
variation (see e.g. [53]) of the whole function. Since f is monotone in all variates, continuous
and positive, the Vitaly variation can be calculated as the difference of the function value at
the end points:

Viewa(5) <2 { 23" T[(2ew) P~ (87)

i=1j=1

Theorem 8.4. Let Hy be the double-ezponential distribution (A > m). The QMC algo-
rithm for Sobol, Halton and Faure sequences for the integration problem (8.5) with H(x) =

log™ N
o (Nl—m/A) ’

Proof. Following [64] and [37] the integration error can be bounded by

[T[i%, Hx (x;) converges with order

1
— n) — x)dx
anlf(Y) Mf( )
1 N
— n) — x)dx x) dx
< |3 2 f o) /[CN,I]f( ) dx| + /m\[cN,uf( )

<= Allew, V) f ()] + D (@) View 11 (f) + (8.8)

/ f(x)dx|.
Im\[chl}

f(1) is zero and therefore also the first summand. For the second summand we obtain using
(8.7), Lemma 8.3, and Dy (w) = O(log™ N/N):

m mo 1 m
Dy () Ve (f) €O IOgNN STIvA <o (7]15?_7”]/\&) .
i=1 j=1

Finally, we analyze the convergence order of the third term. Therefore we divide the interval
I =10,1] in the three (disjoint) subsets A; = [0,cn), A2 = [en,1/2) and Az = [1/2,1]. This
induces a partition of I™ in 3™ subsets [; = Q" Aj, where A; is A; if the projection
of I; on the s-dimension coincides with A;. Furthermore let ;;, (i = 1,2,3) be the number
A;-elements in the product.

Now we define A as the set of all I; that lie in I" \ [en, 1]. So we get

/Im\[cN,l]f(X)dX =2 /ij(x)dx

IJ‘E.A




Chapter 8. Option pricing as an unbounded non-uniform QMC integration problem 100

Now define the function
L1/
B(x) =4
1 else,

if z; € A1 U Ay,

so that we get the inequality f(x) < C'[[\%, B(w;) for some constant C. This yields

. la,j

cN l1,; 1/2 %
/ fx)dx| <O </ 2~ dx> (/ 2~ dm) ll -
IJ' 0 CcN 23,3

< o (i)

For the Halton, Faure and Sobol sequences we get with the preceding lemma cy = O(1/N)
and finally with /; ; > 0 for I; € A:

/ £(x) dx
I™\[eN,1]

log™ N
_ —(1-1/X) g
_O<N ) §(9<7N1_m/>\>.

O

This result can be generalized to all distributions, which have lighter tails than the double-
exponential distribution. The following obvious lemma will provide the base for the general-

ization.

Lemma 8.5. If there ezist an xog € R and two densities f1 and fo on R such that f1(z) > fo(x)
for all x > x¢, then the inverse distribution functions act in the same manner F'(x) >
Ey Y (x) for all x> x.

Theorem 8.6. For all distributions H(x) = Hy(x1)Ha(x2) - -+ Hp(2,) with the property that
there exist a A > m and an zq for all 1 <1 < m such that H;(x) < Hx(x) for all x > xg, the
convergence order of the QMC algorithm with inversion method using Sobol, Halton or Faure

log™ N
O (Nl—m/A) ’

Proof. Without loss of generality we assume H;(x;) = F(x;) for 1 < i < m. Again we take

sequences for the problem (8.5) is

inequality (8.8). The first term equals zero. If cy is small enough we have F~(cn) < H; '(cn)
so that the second term can be bounded like in the proof of Theorem 8.4. For the third term
we divide I in Ay = [0,¢cn], A2 = (en, Z], and A3z = (T, 1], where Z is the solution of F'(z) = 0.
We define

epil(mi) if z; € A1 U Ay

B(x;) =
' 1 else

So f(x) < [Ii*, B(z;) and with the same notations as before and the observation that
efZ (@) 5 oF (@) ip A1, we finish

/Ij fx)de| <O <</ON z A dx)lu (/: w1/ dm) " (1- f)l?w') <
O <(CN)(1—1/A>Z1,J->

The convergence order is now calculated analogous to Theorem 8.4. O
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8.5 Other integral transformations

The inversion method is a rather special integral transformation and seldom available. Instead
of the inverse distribution function one can try other functions, which might be easier to
implement. Additionally, if the tails are heavy enough, one can force the integrand to be of
bounded variation. Such integral transforms are closely connected to importance sampling
methods.

Let G be a distribution on R™ with density g(x) = g1(x)g2(z) - - - gm (), then we can transform
the integral (8.3) to

+m

& S 62321 G;l(lfmj) _ hi(G;I(l —x;)) N
/[071} (m ZZ:; K) [1 (G711 — ) dG(x), (8.9)

i=1 91\

To obtain a small variation, the distribution G should have the following properties: g(x) >
0 for all x € R™ and the density g should have a similar shape as |f(x)h(x)|. Here we
consider two transformation distributions: on the one hand the (shifted) double-exponential
distribution with \; = Var[H;] and p = argmax,cpm p(x) []~, hi(x;), where h; denotes the
density of H; and on the other hand the (rescaled) hat function of the ratio of uniforms
method (e.g [22]). Both distributions are computationally easy to handle and have tails such
that the integrand is of bounded variation. So asymptotically these algorithms perform better
than the inversion method algorithms.

8.6 The Hlawka-Miick method

In the previous sections we transformed the integral to the unit interval using a suitable
density to be able to directly apply Quasi-Monte Carlo methods with respect to the uniform
distribution. Such a procedure, however, might lead to practical problems, for example if the
resulting product term in (8.9) is sharply peaked, which might happen for some parameter
choices. In these cases, one cannot expect uniformly distributed QMC methods to lead to
acceptable results. In [43] and [42] Hlawka and Miick proposed a method for the direct
creation of F-distributed low-discrepancy sequences, where F' is a distribution with support
I™ and density f.

In our case (see (8.3)), the dimensions of the H-distributed m-dimensional variates are in-
dependent and thus the density can be factored into a product of one-dimensional densities.
Consequently we apply the simpler construction:

Lemma 8.7 (Hlawka, [41]). Let F(x) = Fi(x1) - ... - Fn(ay,) denote a cumulative dis-
tribution function with density f(x) defined on I™ and M; = sup f(x). Let furthermore
w = (X1,X2,...,XN) be a sequence in I"™ with discrepancy Dy(w). Then the point set
w = (5’1, cee 75’N) with

N N
- 1 1
ki = 7 o+ = Fjae)) = N > Xioan) (Fy (2r)) (8.10)
r=1

r=1

has an F-discrepancy of
DN7F((D) < (1 + 3me)DN(w) .
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As the H;-distributions in problem (8.3) typically have unbounded support, we need to trans-
form them to the unit interval, generate low-discrepancy sequences there, and then convert
them back to H;-distributed low-discrepancy sequences on R. Therefore we write the densi-
ties as h;(v;) = h;(H, ' (Hx(2;))), where H) denotes again the (one-dimensional) exponential
distribution with parameter A. Denoting §(y) = hi(H, '(y)) we generate for each dimension
sequences @; on I which are distributed with density g(y) using the algorithm of Lemma 8.7.
Then we transform them back to R using the distribution function of the double-exponential
distribution. Since a transformation using a quantile function of any distribution F' preserves
the discrepancy, i.e. Dy(w) = Dy r(F~1(w)), this last step can be justified, and the discrep-
ancy is not affected. We obtain H;-distributed low-discrepancy sequences w; = H;l(cbi) by
this process.

The H-discrepancy of the sequence w, generated by pasting the dimensions @w; together again,
can be estimated as

Dy (@0) = Dy (@) < (14 3mMz)Dy (w)

using the uniform discrepancy of the original sequence.
Once we have these H-distributed variates w = (y;);>1, the integral can be estimated as

1 N
[ pe0dae) = 5 Y o). (811)

Theorem 8.8. Using the Hlawka-Miick-type method as outlined above to create H-distributed
variates from Sobol, Halton or Faure sequences, the convergence order of the direct QMC
algorithm (8.11) for the improper integration problem [g,, p(x)dH (x) can be bounded by

log™ N
o <N1m//\> ’
Here A\ denotes the parameter of the double-exponential distribution used to transform to the
interval I and back.

Proof. In the original integral in (8.11), the integrand has a singularity for z; — oo, i.e. at
the upper integration boundary. In that case, a theorem similar to Theorem 8.2 holds with
the upper and lower boundaries exchanged, and

CN.; = max ; cNi < ¢ < aj.
J 1§n§Ny"’]’ J j J

Also, the error bound (8.8) holds with the same changes:
1Bl <1 = H(e)||p(=00)| + Dnu (&) V-0, (P) + /Rm\( . p(x) dH(x) (8.12)

We have
p(—oo) = 0, |1 — H(é)‘ < 1, DN’H((D) < (1 + SmMg)DN(w) .

Also, the payoff function is monotone in all variables and continuous, so we choose ¢; =
HYeny) = —+log (2 — 2cy;) for N and thus cy,; and & sufficiently large. Then we obtain

Vicoso8) () < 2™ (p(€) — p(—00)) = 2"p(¢).
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For ¢; sufficiently large, the (... )"T-Operator in p(x) can also be omitted, and using the bounds
1— % <eny; <1- O%N (with a suitable constant «) for the Sobol, Halton and Faure sequences

leads to
i

S0 — 1 ( 1 )
Vfooé S 2m - -1 - K =0 oy .
e ®) m; jHl(mN)—% N=%

The order of the remaining term gy = me\[foo ) p(x) dH (x) was already determined as
O (N~(=1/Y) in Theorem 8.6, because

/ e diGo)| = | £(1 - x)dx
R™\[—00,€) I™\[0,1—cpn)

=0 <N(1—%)) :

/ f(x)dx
Im\[chl)

Putting all these terms together, the second term in (8.12) has the largest order in N of
O ((log™ N)/lem/)‘), which proves the theorem. O

8.7 Importance sampling

As the generation of Hlawka-Miick-(double)-sequences is rather expensive, we try to improve
the convergence speed of our algorithms through importance sampling. The idea is to use
the properly shifted original distribution H; as transformation distribution G; in equation
(8.9). Properly means in this case that we shift the distribution H; such that its mean
coincides with the i-th coordinate of the argmax of the product payoff times density, i.e.
gi(x) = hi(x — (m; — p1;)), where m = argmax,cpmp(x) [[1", hi(z;) and p; = EQ[H;]. This
procedure was inspired by a method proposed by Glasserman et. al in [33] when valuing
Asian options in a Gaussian framework and successfully adapted for the hyperbolic case in
[38]. Here it will be combined with Hlawka-Miick methods.

8.8 Numerical results

We will now investigate the various numerical methods presented in the previous chapters. As
an example inspired from a real share we use an Asian option on a stock with normal inverse
Gauss-distributed log increments (i.e. Z in (8.2) has density fnyrg(x)) using parameters as
given in Table 8.1.

Fvio(@) = gexp <6 o~ B+ Bla— M)) 0K (/62 + (z — M)Q),
mo Y P (e )

where K;(z) denotes the modified Bessel function of third type of order 1 (Macdonald func-
tion).

We sample the increments of the option value in weekly intervals, with the options having
a maturity of one, two, and three months (4, 8, and 12 weeks). As a result, our problem
is a 4-, 8-, and 12-dimensional integral over the payoff function. In our calculations, we
use a Mersenne twister as random number generator, and the Sobol sequence for all QMC
integration methods, with the exception of the Hlawka-Miick method, which employs the
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o = 136.29 0 =—15.1977 0 =0.0059 -5 p=0.00079 -5
r = 0.0375 250 days per year
E[H;] = 0.00063981 o[H;] = 0.014851 X\ = 95.2271

Table 8.1: Parameters of the NIG distribution (under the martingale measure obtained by Esscher
transform) and the option, as well as the resulting moments of the NIG and double-exponential dis-
tributions. As the NIG distribution is stable under convolution, we sample the increments weekly and
use a factor 5 for 6 and p.

Halton-sequence. Calculations using the Sobol or Faure sequence show no significant difference
(although the Faure sequence might be interpreted as slightly inferior compared to the others),
so we will omit their results in the sequel.

Figure 8.1 shows log-log plots of the relative error for some of the methods discussed earlier,
Table 8.2 gives the corresponding numerical values. In particular, we compare several QMC
methods to a crude Monte Carlo estimator (using acceptance-rejection from pseudo-random
numbers to generate NIG-distributed variates). Independent of the dimension of the inte-
gration problem, this crude Monte Carlo approach yields the worst results for all V. Some
improvement can be achieved by using the importance sampling idea discussed in Section 8.7,
where the mean of the NIG-distributed variates is shifted to the maximum of payoff times
density function.

In contrast to these two Monte Carlo methods, we apply QMC methods using an integral
transformation. We give two examples of such a transformation: On one hand, we approxi-
mate the NIG distribution by the hat function of the ratio-of-uniforms method, and on the
other hand we use the double exponential distribution. Both distributions have the advantage
that the distribution function and its inverse are explicitly known, so the integrand in (8.9)
can be easily calculated. In these two cases, we employ the Sobol sequence as low-discrepancy
sequences.

Finally, we directly generate NIG-distributed low-discrepancy sequences with the Hlawka-
Miick method described in Section 8.6 using the Halton sequence. Additionally, we also
employ the importance sampling of Section 8.7 in an attempt to improve the results even

more.

As seen in the figure, the direct Monte Carlo method (crude MC and importance sampling)
cannot compete with the QMC methods. While the transformation using the ratio-of-uniforms
function gives excellent results in four dimensions, it looses its good features in 12 dimensions.
This is probably a consequence of the fact that the multi-dimensional hat function cannot
approximate the density so well any more, and the numeric calculation of the needed parame-
ters is relatively error-prone. The double-exponential distribution displays a similar problem,
where for smaller values of IV it does not seem to have any advantage over crude Monte Carlo.
Only for larger numbers of points it is able to gain advantage, an effect which gets even more
pronounced as the number of dimensions increases.

Finally, the Hlawka-Miick transformation from the Halton sequence to NIG-distributed low-
discrepancy sequences can give considerable improvement over the other methods presented.
While in four dimensions all QMC algorithms have similar errors, in 12 dimensions only the
Hlawka-Miick transformation leads the other methods by some orders of magnitude. Although
the generation of the NIG-distributed sequences is numerically quite expensive due to the N?



Chapter 8. Option pricing as an unbounded non-uniform QMC integration problem 105

Log,(er) 4 dimensions
-4
—MC
-6
———— Import. samp.
-8 T Y~ T Ratio of unif.
-10 — - — - - Hlawka—-Miick
-12 —--—-HMIS
_14 — - — double exp.
Log,(ern 8 dimensions
‘ ‘ N
-4 MC
6 ———- Import. samp.
------- Ratio of unif.
-8 — - — - Hlawka—Miick
—--—HMIS
-10
— - —double exp.
Log,(erm) 12 dimensions
4 MC
5 ———- Import. samp.
6l Tt TN T~ e Ratio of unif.
-7 — - — - Hlawka—Miick
-8 —--—HMIS
-9 — - —double exp.

Figure 8.1: Relative errors of the simulations in 4, 8, and 12 dimensions. Monte Carlo results are
average errors of 25 independent runs, all QMC results come from a single run.
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4 dimensions 32 128 512 2048
Monte Carlo 0.12072217 0.06147889 0.03838273 0.01202358
Importance sampling | 0.05876176 0.02490847 0.01199762 0.0060517
Ratio of uniforms 0.0766848  0.03733064 0.01201625 0.00184711
Hlawka-Miick 0.06527011 0.01074534 0.00822849 0.00207232

HM Import. sampling | 0.0112777  0.01467202 0.00082417 0.00099044
Double exponential 0.06153541 0.0010981  0.00314842 0.00112535

4 dimensions 4096 16384 65536 262144

Monte Carlo 0.00996698 0.00517292 0.00297738 0.00187234
Importance sampling | 0.00470025 0.00240813 0.00099072 0.00041771
Ratio of uniforms 0.00014952 0.00010376  0.00007589  0.00000031
Hlawka-Miick 0.00129508 0.00043016 0.00019038 0.00008742

HM Import. sampling | 0.00018239 0.00040792 0.0000545  0.00006087
Double exponential 0.00103612 0.00027488 0.00001819 0.00000803

8 dimensions 32 128 512 2048

Monte Carlo 0.12370532 0.06464402 0.02860497 0.01937286
Importance sampling | 0.05797634 0.02903363 0.017333 0.00718672
Ratio of uniforms 0.19733215 0.02058577 0.00879434 0.02300414
Hlawka-Miick 0.18544944 0.05211664 0.00141103 0.00121882

HM Import. sampling | 0.03022395 0.00752137 0.00329977 0.00258743
Double exponential 0.09533048 0.03148169 0.03270188 0.00251103

8 dimensions 4096 16384 65536 262144
Monte Carlo 0.01354622 0.00617114 0.00253223 0.00167647
Importance sampling | 0.00548498 0.00269138 0.00161492 0.0006278
Ratio of uniforms 0.00339376  0.00204859 0.00058707 0.00005102
Hlawka-Miick 0.00085671 0.0002217  0.00001117 0.00011178

HM Import. sampling | 0.00050351 0.0005005  0.00002434 0.0000239
Double exponential 0.0025084  0.0000498  0.00059723  0.00022552

12 dimensions 32 128 512 2048

Monte Carlo 0.12688204 0.06009656 0.02583161 0.01941282
Importance sampling | 0.04667326 0.02706982 0.01604223 0.00585588
Ratio of uniforms 1.3300692  0.29538864 0.0077653  0.06920285
Hlawka-Miick 0.19649027 0.0850785  0.00348351 0.00070439

HM Import. sampling | 0.100306 0.02977137 0.00405115 0.00196351
Double exponential 0.14756909 0.01798477 0.0335691  0.01061674

12 dimensions 4096 16384 65536 262144

Monte Carlo 0.01259962 0.00578311 0.00312989 0.00176997
Importance sampling | 0.00572169 0.00206127 0.0012058  0.00081798
Ratio of uniforms 0.04219506 0.00508302 0.00193717 0.00098897
Hlawka-Miick 0.00069954 0.00008126 0.00054785 0.00028312

HM Import. sampling | 0.00038741 0.00019782 0.00040928 0.00010181
Double exponential 0.01194394 0.00139974 0.0005346  0.00037327

Table 8.2: Numerical values of the relative errors in 4, 8, and 12 dimensions. The exact value is
0.898087 in 4 dimensions, 1.22436 in 8 dimensions, and 1.50384 in 12 dimensions.
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effort in the double sum in (8.10), only a very small number of points is needed to achieve
an error of a size which is obtained by crude Monte Carlo with about 100 times as many
points. For such small values of N, even the generation of the Hlawka-Miick variates is not
too expensive and can be considered competitive. Interestingly, importance sampling cannot
improve the quality of the Hlawka-Miick results any more. In contrary, in eight dimensions,
the error even increases when one tries to employ importance sampling to the NIG-distributed

sequences.

8.9 Conclusion

In this chapter we successfully showed that the evaluation of the integral (8.3) can be consid-
erably improved compared to crude Monte Carlo evaluation. Several integral transformations
and subsequent application of QMC integration techniques are of advantage, especially in
low-dimensional problems. However, the direct generation of NIG-distributed low-discrepancy
sequences using Hlawka and Miick’s idea provided the best basis — especially in higher dimen-
sions — to evaluate the problem with excellent results. Although this generation is rather
expensive, it only needs a fraction of the number of points needed for the other methods.
Here we only looked at two specific integral transformations, namely the double-exponential
distribution function, and the hat function inspired by the ratio-of-uniforms transformation.
An interesting question to be investigated in the future is the search for better or even opti-
mal integral transformations for improper integration problems like the one discussed in this
article. A similar question is the choice of transformation for the Hlawka-Miick generation of
low-discrepancy sequences.
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