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Abstract

In this paper the Quasi-Monte Carlo methods known for Runge Kutta solution
techniques of ordinary differential equations and recently also of delay differential
equations of one retarded argument are extended to delay differential equations
of an arbitrary (but finite) number of retarded arguments. Their convergence and
its order are proved, and an extensive numerical investigation is carried out.

1 Introduction

When dealing with real-world problems, the change of a process y(t) and thus the
derivative y′(t) in its mathematical representation often not only depend on the value of
the process at present, but also on the past values. The differential equations describing
such processes are usually called delay or retarded differential equation, since they also
involve terms of the form y(t − τ(t)), where τ(t) is a function with positive function
values, the simplest being a constant retardation y(t− τ) with τ > 0. In [7] we looked
at a class of delay differential equations with one retarded argument of the form

y′(t) = f (t, y(t), y(t− τ(t))) , for t ≥ t0, (1)

where the solution y(t) is a d-dimensional real-valued function, τ(t) is the continuous
delay function, which was assumed to be bounded from below by τ0 > 0). Further-
more, φ(t) is the initial function, which is piecewise continuous at least on the interval
(inft0≤t(t− τ(t)), t0). The analysis there was restricted to the case when τ(t) fulfills the
condition t1 − τ(t1) ≤ t2 − τ(t2) for t1 ≤ t2.

In that paper [7] we generalized the known Runge-Kutta (Quasi-) Monte Carlo meth-
ods, henceforth called RK(Q)MC methods in short, as proposed by Stengle [17, 18],
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RKQMC methods for delay differential equations

Lécot [9], Coulibaly and Lécot [1] and Lécot and Koudiraty [10] for ordinary differen-
tial equations, to delay differential equations of the form (1). Such randomized Runge
Kutta algorithms are obtained similar to conventional Runge Kutta methods, except
that for conventional Runge Kutta methods f(t, y(t)) is Taylor-expanded in both t and
y(t), while for (Quasi-) Monte Carlo Runge Kutta schemes the expansion is done only in
y(t), resulting in an integral equation. This equation is then solved using conventional
(Quasi-) Monte Carlo integration. The advantage of these schemes is that they no longer
put any smoothness requirements in t on the function f(t, y(t)) or f(t, y(t), y(t− τ(t))),
but instead f needs to be only of bounded variation in time t. However, the solution
needs to be piecewise r/2-times differentiable to be able to use Hermite interpolation.
Although the RKQMC methods are more expensive than the conventional Runge-Kutta
methods due to the use of (Quasi-) Monte Carlo integration, for heavily oscillating dif-
ferential equations the RKQMC methods lead to a significantly reduced error compared
to Runge Kutta schemes. As we will show in the last section, RKQMC methods can
even be applied to delay differential equations, where classical solution methods become
unstable. Furthermore, the integration points for the (Q)MC integration can be calcu-
lated in parallel, and thus make use of the power of parallel computers, which is not
easily possible for conventional Runge Kutta schemes. As we showed in [7], the low
order RKQMC methods can even outperform high order Runge Kutta schemes, if the
delay differential equation (DDE) varies significantly faster in t than it does in y(t).

2 Description of the problem

In this paper we will consider Quasi-Monte Carlo Runge Kutta methods for a gener-
alization of the delay differential equation (1) to an arbitrary (but finite) number of
retarded arguments:

y′(t) = f (t, y(t), y(t− τ1(t)), . . . , y(t− τk(t))) , for t ≥ t0, k ≥ 1,

y(t) = φ(t), for t ≤ t0 ,
(2)

where the solution y(t) is a d-dimensional real-valued function, τ1(t), . . . , τk(t) are con-
tinuous delay functions, which we assume to be bounded from below by τ0 > 0. Fur-
thermore, φ(t) is the initial function, which shall be continuous at least on the interval
[inft0≤t (t− τ(t)) , t0].

Like in [7], we will sequentially calculate the approximated function values yn at times
tn = t0+

∑n
j=0 hj for time steps hn. To obtain the values of the retarded arguments y(t−

τj(t)) from the sequence (yn) we will use Hermite interpolation, because the numerical
value of the derivative y′(tj) at time tj is known from the differential equation. The main
advantage of Hermite interpolation over interpolation methods using just the function
values is that it only needs half the points to obtain a given interpolation order.
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For f continuous in t and Lipschitz in the other variables, Driver [2] gave a local existence
and uniqueness theorem for a very general Volterra functional delay differential equation,
which contains (2) as a special case. In this case, the existence theorem reads:

Lemma 1 (local existence and uniqueness, Driver [2]). Let f be (i) continous in
t and (ii) locally Lipschitz in the other arguments y(t) and y(t − τk(t)), and the initial
function φ(t) continuous on [α, t0], where α = inf t≥t0

1≤j≤k
(t− τj(t)). Then for sufficiently

small h > 0 there exists a unique solution y(t; t0, φ) to the differential equation (2) for
α ≤ t < t0 + h.

Remark. One should notice that while the RKQMC methods might still be applicable,
if f is not continous but only bounded and measurable in t, this theorem cannot be
applied. However, under hypotheses similar to the ones Stengle assumes in [18, Hypoth-
esis 2.1], Picard iteration can be applied to assure local existence and uniqueness if f is
only bounded and measurable in t.
If f is not globally continuous, however, Hermite interpolation and thus RKQMC meth-
ods for DDE can only be applied, if the solution y is at least piecewise continuous on
intervals which contain p/2 or more support points tj, . . . , tj+p/2 so that the interpolation
error can be bounded using the interpolation order.

However, even smoothness of f and φ does not guarantee smoothness of the solution
y(t), because similar to delay differential equations with one retarded argument (see [13])

the solution in general will have discontinuous first derivatives at times t
(1)
j which are

defined as the solutions of the equations t
(1)
j − τj(t

(1)
j ) = 0 for 1 ≤ j ≤ k, discontinuous

second derivatives at times t
(2)
j,l with t

(2)
j,l − τl(t

(2)
j,l ) = t

(1)
j for 1 ≤ j, l ≤ k, and so on.

On the intervals between them, a calculation of the exact solution is possible in theory
by inserting the already calculated solution from the previous intervals to get rid of
the retarded arguments. Thus the calculation of an exact solution means sequentially
solving ordinary differential equations on each of the intervals, which quickly becomes
an analytically intractable problem.

In this paper, however, we will not be concerned with exact solutions, but with its nu-
merical approximation by means of (quasi-)randomized Runge Kutta methods. We will
first present our RKQMC method, which combines the RKQMC methods by Stengle,
Lécot, Koudiraty and Coulibaly with the Hermite interpolation method for delay differ-
ential equations. We will give a short convergence proof for arbitrary RKQMC schemes
applied to delay differential equations of multiple retarded arguments under certain
technical conditions on the delay differential equation, the interpolation and the specific
RKQMC scheme taken from ordinary differential equations. A convergence proof for
delay differential equations with only one retarded argument was already given by the
authors in [7]. The biggest part of the paper, however, will be dedicated to an extensive
numerical investigation of the RKQMC methods for delay differential equations.
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2.1 Quasi-Monte Carlo methods and low-discrepancy sequences

Quasi-Monte Carlo integration methods have been developed for several reasons. They
were developed similar to Monte Carlo methods, only that instead of real (pseudo-) ran-
dom numbers one uses deterministic sequences, also called low-discrepancy sequences,
which possess very good uniform distribution properties instead of good randomness.
The use of such sequences allows the calculation of deterministic upper error bounds
instead of only probabilistic bounds when using Monte Carlo methods. Furthermore, it
turned out, that by using these well distributed sequences, one can significantly increase

the order of the integration error to O
(

(log N)s

N

)
compared to an order of O

(
1√
N

)
for

Monte Carlo methods. And still QMC methods have all the properties for which Monte
Carlo integration is chosen over conventional numerical integration methods. In par-
ticular, the accuracy of the integration can be improved at any time by simple adding
additional summands without the need to recalculate the rest.

The quality of the uniformity of such an s-dimensional sequence S with N element is
usually measured by means of the so-called discrepancy, which is defined as

DN(S) = sup
a,b∈[0,1]s

∣∣∣∣A([a, b) , S)

N
− λs([a, b))

∣∣∣∣ , (3)

where A(E, S) counts the number of points of the N -element set S that lie inside the
interval E, and λs(E) denotes the s-dimensional Lebesgue measure. Instead of all half-
open intervals of the unit cube, the supremum is often taken over all intervals of the
form [0, a) with a ∈ [0, 1], and the associated discrepancy is called the star discrepancy
D∗

N(S).

The notion of discrepancy is especially important because the integration error of func-
tions f of bounded variation V (f) on [0, 1]s in the sense of Hardy and Krause (see e.g.
[3]) can be bounded by the famous Koksma-Hlawka inequality:∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫

[0,1]s
f(u)du

∣∣∣∣∣ ≤ V (f)D∗
N(x1, . . . ,xN) (4)

for any point set S = {x1, . . . ,xN}. For a proof of this famous error bound of Quasi-
Monte Carlo integration, we refer to [3]. In contrast to Monte Carlo error bounds, this
inequality is a deterministic error bound which holds for all sets S.

Especially for dimensions s not too large, the use of so-called low-discrepancy sequences,
i.e. sequences with discrepancy of order

D∗
N(x1, . . . ,xN) ≤ Cs

(log N)s

N
(5)
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with in explicitly computable constant Cs, can reduce the integration error considerably,
even compared to conventional Monte Carlo methods. This discrepancy order with
respect to N is conjectured to be optimal, however, known values for Cs are usually
usually too pessimistic, and the dependency on s varies heavily for the known bounds
(for a profound and very general investigation on the dependency on s, especially for
large s, see [12]).

Examples of such low-discrepancy sequences are Halton sequences and net sequences,
with Sobol’s, Faure’s and Niederreiter’s sequences being the most prominent examples.

The n-th element of the s-dimensional Halton Sequence [6] in pairwise prime integer
bases b1, . . . , bs is defined as ξn = (bp1(n), . . . , bps(n)), where bp(n) is the digit reversal
function of the representation of n in base p, i.e.

bp(n) =
∞∑

k=0

nkp
−k−1 where n =

∞∑
k=0

nkp
k ,

which means that the p-adic expansion of n is reversed at the comma. The proofs by
Halton [6] showed that the discrepancy is minimal if the pi are chosen as the s smallest
prime numbers.

Even better theoretic error bounds can be obtained by (t, s)-sequences in a chosen base
p, which are based on (t,m, s)-nets in base p. An s-dimensional point set P with bm

elements is called a (t,m, s)-net if every elementary interval J (which is an interval of the
form J =

∏s
i=1

[
aip

−di , (ai + 1)p−di
)

with ai, di ∈ N) of Lebesque measure λs(J) = pt−m

contains exactly pt elements of the set.

Using this definition of a (t,m, s)-net, a sequence S = {ξ1, ξ2, . . .} of points in [0, 1]s is
called a (t, s)-sequence, if for all integers k ≥ 0 and m > t the point sets consisting of
the ξn with kpm < n ≤ (k + 1)bm forms a (t,m, s)-net in base b.

The discrepancy of the (t, s)-sequence is minimal for t being as small as possible, but
unfortunately, (0, s)-nets do not exist for all bases b. See for example [11] for lower
bounds of t for given pairs (s, b). Examples of (t, s) nets are:

• Sobol sequences are (t, s)-sequences in base 2 with values for t depending on s.
They were initially proposed by Sobol [16], but other choices for the direction
numbers used in the construction have also been proposed (e.g. [15]).

• Faure sequences [4] are (0, s)-sequences in a base b which is the smallest prime
number fulfilling b ≥ s. The s-dimensional Faure sequence is defined by{

φb(n), P (φb(n)), . . . , P s−1(φb(n))
}

where the function P is defined for a b-adic rational x ∈ [0, 1] with expansion
x =

∑∞
j=0 xjb

−j−1 as P (x) =
∑∞

j=0 ξ(xj)b
−j−1 with ξ(xj) =

∑
i≥j

(
i
j

)
xi mod b.

115



RKQMC methods for delay differential equations

• Niederreiter sequences [11] are a generalization of Sobol’s and Faure’s sequences
and yield general (t, s)-sequences for arbitrary bases p with the restrictions on t
mentioned above. For various different constructions see [11].

3 The RKQMC method for differential equations

with multiple retarded arguments

Following the path of Stengle [18] as well as Lécot, Coulibaly and Koudiraty ([9, 1, 10],
we will now deduce Quasi-Monte Carlo schemes for delay differential equations with
multiple retarded arguments. These schemes are akin to the family of Runge-Kutta
schemes and thus they are often called Runge Kutta (Quasi-) Monte Carlo schemes
(RKQMC in short).

In [10] Lécot and Koudiraty treated the case of ordinary differential equations and
derived a quasi-randomized Runge Kutta scheme. If we assume that we already know
the exact or approximated solution ŷ to the equation up to time t (or at least up to
max1≤i≤k(t− τk(t)) ), this solution can be inserted into the right hand side of equation
(2), and the equation simplifies to an ordinary differential equation at time t with
g(t, y(t)) := f(t, y(t), y(t− τ1(t)), . . . , y(t− τk(t)). The value of the solution at this time
can now simply be calculated by such a Runge Kutta QMC scheme. For this reason, in
the following paragraphs we will repeat Koudiraty’s arguments which lead to RKQMC
methods for ordinary differential equations. Throughout the whole argumentation, the
existence and uniqueness of the solution y(t) with y′ ∈ L1(0, T ) needs to be assumed,
which in our case is guaranteed by the theorem and the remarks of the previous section.

Starting from the differential equation y′(t) = g(t, y(t), y(t− τ1(t)), . . . ) or its equivalent
integral representation

y(t0 + h) = y(t0) +

∫ t0+h

t0

g(u, y(u), y(t− τ1(t)), . . . )du

the retarded values y(t− τ1(t)), . . . , y(t− τn(t)) are approximated by ordinary Hermite
interpolation from the already calculated values at the discrete times tn ≤ t. This is
done using an interpolation function

z̃(t) = z(yi)i≤n
(t) =

{
φ(t), if t ≤ t0

Pq (t; (yi) , (y′i)) otherwise
(6)

which uses the initial function φ(t) for all values prior to the starting value. For later
times the function z(t) is constructed piecewise by Hermite-interpolation where appro-
priate grid points tn are used as support points and the value of y′(tn) is approximated
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by f(tn, y(tn), y(tn−τ1(tn), . . . , y(tn−τn(tn))). The support points to construct the Her-
mite polynomial for a certain value of t are chosen such that extrapolation is avoided,
and all support points lie inside the same interval of smoothness as the time t. Nat-
urally, it is of advantage to use adjacent grid points with the value of t in between,
so that the interpolation error is kept to a minimum. Apart from this incentive, the
method does not put any further restrictions on the choice, except that the resulting
function g (t, y(t); z(t− τ1(t)), . . . , z(t− τn(t))) needs to be of bounded variation in t to
be able to apply the RKQMC methods at all. In contrast to previous works (e.g. Oberle
and Pesch [13]), smoothness in the interpolation function is thus not required, which
would mean that only one interpolation polynomial has to be used for all interpolation
values in one time step. Since our method involves integration over a whole interval,
this would involve an extensive amount of extrapolation, so the possibility to chose the
interpolation polynomial freely according to only the value of t is of vital importance
here.

Inserting the interpolation function z(t) into the delay differential equation transforms
it into an ordinary differential equation, or an ordinary integral equation, respectively:

y(t0 + h) = y(t0) +

∫ t0+h

t0

g(u, y(u), z(u− τ1(u)), . . . )du (7)

Starting from equation (7), the function g is Taylor-expanded up to order s with re-
spect to y(t) and recursively inserted into itself. Since this requires g to be s-times
differentiable in y, the function f needs to be s-times differentiable in y. According
to the discussion above for smooth f and φ the solution y(t) is also smooth on the
interval [t0, mini≤k τi). Note that g does not have to be Taylor-expanded in the retarded
arguments y(t − τ1(t), y(t − τ2(t)), . . . , because their values are already calculated via
Hermite interpolation.

Using the general identity(∫ ui

t0

f(u)du

)n

= n!

∫ ui

t0

· · ·
∫ ui+n

t0

f(ui+n−1) · · · · · f(ui+n)dui+ndui+1

this gives [8]

y(t0 + h) = y(t0) +

∫ t0+h

t0

F1(u1; y)du1 +

∫ t0+h

t0

∫ u1

t0

F2(u1, u2; y)du2du1 + . . .

+

∫ t0+h

t0

∫ u1

t0

∫ us−1

t0

Fs(u1, . . . , us; y)dus . . . du1

=:
1

s!hs−1

∫ t0+h

t0

∫ t0+h

t0

Gs(ū1, . . . ūs; y)dus . . . du1

with

Fi(u1, . . . , ui; y) := D1
yFi−1(u1, . . . , ui−1; y)f(ui; y(ui), y(ui − τ1(ui)), . . . )
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and F0(y) := y. Here ū denotes the vector u with the components sorted in ascending
order. The function Gs still contains derivatives of f(t; y, y(t − τ1(t)), ...) with respect
to y(t). Using a specific identity like the ones proposed by Stengle [18] or Lécot and
Koudiraty [8] to approximate linear combinations of derivatives of f by Runge-Kutta-
like schemes of order s, one can obtain particular increment functions

G̃s(ū1, . . . ūs; y(t), y(t− τ1(t)), . . . , y(t− τn(t)))

which approximate the exact increment function to order hs+1:

G̃s = Gs(ū1, . . . ūs; y(t), y(t− τ1(t)), . . . , y(t− τn(t))) +O(hs+1) .

As a final step to obtain the method, the remaining integral over [t0, t0 + h)s is calculated
by Quasi-Monte Carlo integration∫ t0+h

t0

∫ t0+h

t0

Gs(ū1, . . . ūs; y) ≈ 1

N

N∑
i=1

Gs

(
¯t(n); y

)
(8)

Stengle [17, 18] proposed a scheme of second order which uses pseudo-random numbers,
while the schemes proposed by Lécot (first and second order, [9]), Coulibaly and Lécot
(second order, [1]) and Lécot and Koudiraty (third order, [8]) use quasi-random numbers
and thus absolute upper error bound were given for these schemes.

In the calculations presented this paper, we will use these existing first, second and third
order RKQMC schemes for the increment function Gs(t, y(t), y(t−τ1(t)), . . . , y(t−τn(t))
and not derive our own schemes.

4 Convergence of the method

Before we can prove convergence of the method, we have to define it in a more rigorous
manner. For brevity, we will suppress the argument t of the function y whenever it is
clear what the argument is.

We first rewrite the delay differential equation (2) in a more Volterra functional equation-
like form

y′(t) = f(t, y(t), z(t)) t ≥ t0 (9)

z(t) = (Fy)(t)

y(s) = g(s) s ≤ t0

where all dependence on retarded values is moved into (Fy)(t). We will furthermore
assume that both F and f are Lipschitz continuous in all arguments except t.
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Our method, which will generate a sequence (yn) of values that approximate the exact
solution y(t) at the grid points t0 ≤ t1 ≤ t2 ≤ · · · ≤ tm, then reads

yn+1 = yn + hn

N∑
i=1

Gs (tn,i; yn, z̃(t))

z̃(t) = (F̃ yj)(t)

(10)

for n ≥ 0, and yj = φ(tj) for j < 0. The function (F̃ yj) uses the interpolation function
(6) for the retarded values of yj.

Our goal is now to establish uper bounds for the error ‖ej+1‖ = ‖yj+1 − y(tj+1)‖. We
will henceforth only use RKQMC methods which converge with order O(hp) for ordinary
differential equations. Following the idea of Oppelstrup [14] for the solution of DDE
using Hermite interpolation, the following theorem proves convergence of our method
for DDE:

Theorem 1. Let y(t) be the solution of the DDE (9), and (yj)0≤j≤n the approximate

solution obtained by (10) on the grid t0 ≤ t1 ≤ · · · ≤ tn. Let furthermore
∥∥EODE

G

∥∥
j

be

the error in the j-th step of the RKQMC method applied to the ODE which uses the exact
solution for the retarded values, and

∥∥EODE
G

∥∥ := maxj

∥∥EODE
G

∥∥
j
. The conventional Her-

mite interpolation error
∥∥Einterpol

r

∥∥
j

is defined as maxtj≤u≤tj+1
(Fy(t))(u) − (F̃ y(t))(u),

and
∥∥Einterpol

r

∥∥ := max0≤j≤n

∥∥Einterpol
r

∥∥
j
. If

1. the RKQMC method with increment function Gs(tn, yn) converges with order p for
ODE as hj → 0,

2. Gs as defined in (10) is Lipschitz in z̃ with constant L̃ > 0, and F is Lipschitz
with constant L2 > 0,

3. F̃ fulfills a Lipschitz criterion
∥∥∥(F̃ uj)(t)− (F̃ vj)(t)

∥∥∥ ≤ L̃max ‖uk − vk‖ with Lip-

schitz constant L̃ > 0,

4. the Hermite interpolation has order r,

5. and the initial error ‖e0‖ vanishes,

then the method converges, and the error is bounded by

‖ej+1‖ ≤ ‖e0‖ eLtj +

(
etjL − 1

)
L

(∥∥EODE
G

∥∥+ L1L2

∥∥Einterpol
r

∥∥)
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Remark. Like in the case of one retarded argument [7], this theorem shows that the
RKQMC1, RKQMC2 and RKQMC3 methods by Lécot, Coulibaly and Koudiraty ([9,
1, 8]) can be successfully applied to DDE. We refrain from giving explicit upper bounds
for the error, since these are usually very generous and several orders of magnitude (up
to 10 orders) above the numerically experienced errors. For this reason, error bounds as
obtained above are useful to prove convergence, but not to give a good error estimate.

Remark. Condition 4 puts an effective upper bound on the step size, namely that r
2

Points tk, ..., tk+ r
2

need to be inside an interval of smoothness as discussed in chapter 2.

Proof of theorem 1. Using the definition of our method, we get for the error ‖ej+1‖:

‖ej+1‖ =

∥∥∥∥∥ej + hh

(
Ĝ(tj, y(·))−

N∑
i=1

Gs(tj,i; yj, z̃(tj,i))

)∥∥∥∥∥ ,

where Ĝ(tj, y(·)) = 1
hj

∫ tj+hj

tj
g (u, y(u), y(u− τ1(u)), . . . y(u− τn(u))) du is the exact in-

crement function using the solution y(·) for the retarded values. This leads to the further
estimate

‖ej+1‖ ≤ ‖ej‖+ hj

∥∥∥∥∥Ĝ(tj, y(·))− 1

N

N∑
i=1

Gs(tj,i; y(tj), z(·))

∥∥∥∥∥+

+ hj

∥∥∥∥∥ 1

N

N∑
i=1

Gs(tj,i; y(tj), z(·))− 1

N

N∑
i=1

Gs(tj,i; yj, z(·))

∥∥∥∥∥+

+ hj

∥∥∥∥∥ 1

N

N∑
i=1

Gs(tj,i; yj, z(·))− 1

N

N∑
i=1

Gs(tj,i; yj, z̃(·))

∥∥∥∥∥
≤ ‖ej‖+ hj

∥∥EODE
G

∥∥
j
+ hj

1

N

N∑
i=1

‖Gs(tj,i, yj, y(·))−Gs(tj,i, yj, z̃(·))‖

where
∥∥EODE

G

∥∥
j

denotes the error in the j-th step of the RKQMC method applied to

the ODE using the exact solution for the retarded arguments. The error due to the
interpolation can furthermore be estimated by

‖Gs(tj,i, yj, z(·))−Gs(tj,i, yj, z̃(tj))‖ ≤

≤
∥∥∥Gs(tj,i; yj, z(·))−Gs(tj,i; yj, z̃(y(ti))i≤j

(·))
∥∥∥+∥∥∥Gs(tj,i; yj, z̃(y(ti))i≤j

(·))−Gs(tj,i, yj, z̃(·))
∥∥∥

≤ L1L2

(∥∥∥y(·)− z̃(y(ti))i≤j
(·)
∥∥∥+

∥∥∥z̃(y(ti))i≤j
(·)− z̃(·)

∥∥∥)
≤ L1L2

(∥∥Einterpol
r

∥∥
j
+ L̃ max

0≤k≤j
‖ek‖

)
using the Lipschitz conditions on the third argument of Gs with constant L1 and on F
with constant L2.

120



RKQMC methods for delay differential equations

Since the ‖ei‖ are monotone increasing, max0≤k≤j ‖ek‖ = ‖ej‖. If we now put everything
together, we get

‖ej+1‖ ≤ ‖ej‖+ hj

∥∥EODE
G

∥∥
j
+ hjL1L2

(∥∥Einterpol
r

∥∥
j
+ L̃ ‖ej‖

)
≤ ‖ej‖

(
1 + L1L2L̃hj

)
+ hj

(∥∥EODE
G

∥∥+ L1L2

∥∥Einterpol
r

∥∥)
=: ‖ej‖ (1 + Lhj) + hjC

≤ ‖e0‖
j∏

k=0

(1 + hkL) + C
j∑

n=0

hn

j∏
k=n+1

(1 + hkL) (11)

≤ ‖e0‖ eL
∑j

k=0 hk + C
j∑

n=0

(
1 + hnL

L

j∏
k=n+1

(1 + hnL)− 1

L

j∏
k=n+1

(1 + hnL)

)
=

= ‖e0‖ eLtj +
C
L

(
j∏

k=0

(1 + hnL)− 1

)
≤ ‖e0‖ eLtj +

C
L
(
etjL − 1

)
= ‖e0‖ eL1L2L̃tj +

(
etjL1L2L̃ − 1

)
L1L2L̃

(∥∥EODE
G

∥∥+ L1L2

∥∥Einterpol
r

∥∥) (12)

where in (11) the inequality was recursively inserted into itself, and an empty product
should be understood as 1.

From the last inequality (12) the convergence of the method is obvious, and it follows
that for a vanishing initial error ‖e0‖ the convergence of the RKQMC method for DDE
is min{p, r}, where p is the convergence order of the RKQMC method for ODE, and r
is the order of the interpolation error. �

5 Numerical Experiments

The idea of using Quasi-Monte Carlo integration for the integration over t stems from
the attempt to minimize the error for heavily oscillating differential equations (or de-
lay differential equations with heavily oscillating solutions, which results in a heavily
oscillating ODE after inserting the solution y(t) for the retarded values). Instead of
accepting the (possibly large) error at just one retarded value, the dependence on t is
averaged out, and the error thus minimized. Since RKQMC methods do not exhibit
any advantage over conventional methods for non-oscillating equations, we will only
investigate several heavily oscillating differential equations.

In our examples we will compare the first, second and third order RKQMC methods
with some conventional Runge Kutta schemes with Hermite interpolation as proposed
for example by Oppelstrup [14] or Oberle and Pesch [13]. In particular, as low-order
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0 11
40

11
40

4
25

4
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13
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Table 1: Butcher tableaus (taken from [5]) for Heun’s (third order, 3-step) and Runge’s
(third order, 4-step) classical Runge-Kutta schemes, as well as for Butcher’s high-order
scheme (6-th order, 7 step)

Runge-Kutta schemes we applied the well-known 4-stage Runge scheme of order 3 and
the 3-stage method of Heun of order 3, while as a high-order Runge-Kutta scheme we
use Butcher’s 6-th order, 7-stage method as described in [5]. The Butcher tableaus of
these classical Runge Kutta schemes are given in Figure 1 for reference.

As a measure of quality of the obtained numerical solutions we will use the sum of
deviations from the exact solution at the times t = 0 . . . 0.1 . . . 20, i.e.

Sλ,(meth) :=
200∑
i=1

∣∣∣∣y( i

10

)
− y

(meth),λ
i
10

∣∣∣∣ , (13)

and all graphical comparisons on the dependence on λ will be given in terms of least-
squares fits of the functions {1, x, x2, log(x)} to the Functions log

(
S(meth),λ

)
. As we

mentioned above, the RKQMC methods use a sum of N function values of f in every
time step to approximate the integral in (8), so a lot more calculation time is needed
for a single RKQMC step than for a conventional Runge-Kutta step. To include this
effect into our evaluation, we will also compare the methods using the least-squares fits
to the logarithm of the timed error ST , which we define as

S
λ,(meth)
T := T λ,(meth)Sλ,(meth) , (14)

with T λ,(meth) being the calculation time for the given method and value of λ, so that
two methods, where one needs only half the time, but twice the error of the other, are
treated alike.

Unless we mention it explicitely, all values are obtained with a constant time step
of hn = h = 0.001 for classical Runge Kutta schemes, and a step of h = 0.01 for
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RKQMC schemes. The simulation is done up to time T = 20, and a forth order Hermite
interpolation is used for the retarded values y(t − τk(t)). As low-discrepancy sequence
for the numerical integration we use Sobol’s sequence, where the N numbers for each
time step are taken sequentially, i.e. we use the first Nn elements of the sequence to
obtain the solution value at time tn.

As a first example of a delay differential equation with two retarded arguments, we
applied our RKQMC methods to the delay differential equation

y′(t) = 3y(t− 1) sin(λt) + 2y(t− 1.5) cos(λt), t ≥ 0 (15)

y(t) = 1, t ≤ 0 ,

which is very similar in its structure to the DDE we investigated in [7]. Its ”exact”
solutions, which we obtained by a run of Butcher’s high order method using a step size
of hn = 0.00001, are shown in figure 1.

5 10 15 20
t

-2

-1

1

2

3
yHtL

Λ=29

Λ=28

Λ=27

Λ=26

Λ=25

Λ=24

Λ=23

Λ=22

Figure 1: Exact solution of examp(15) for some values of λ obtained by a run with very
small step size.

Figure 2 and table 2 show the results of our calculations for increasing λ = 2k, 0 ≤
k ≤ 20. As one might expect from the the results in [7], for small values of λ, the
conventional Runge-Kutta schemes clearly give better results than the quasi-randomized
methods presented here. However, for values of λ above 211, the RKQMC methods
become competitive, and give better results for λ > 12. One has to notice that all
three RKQMC methods we investigate show roughly the same behaviour, although in
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Figure 2: RKQMC vs. conventional Runge-Kutta schemes for equation (15).
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Figure 3: Time-corrected comparison for equation (15).

Butcher Runge RKQMC1 RKQMC2 RKQMC3 RKQMC3
λ N = 1000 N = 1000 N = 1000 N = 10
25 −7.39198 −7.17466 −4.21003 −4.21009 −4.21026 −5.55528
26 −9.12876 −8.91401 −6.63217 −6.63697 −6.63852 −5.05383
27 −9.39176 −9.16272 −5.71178 −5.7132 −5.71862 −5.64201
28 −8.32904 −8.11228 −6.85581 −6.85166 −6.8277 −4.75116
29 −7.28245 −7.05248 −5.54155 −5.53954 −5.53957 −5.63427
210 −8.25863 −8.00724 −6.65457 −6.61329 −6.76324 −4.56086
211 −7.65107 −7.45674 −8.69076 −8.28356 −8.43429 −6.29302
212 −8.31722 −8.08087 −9.05153 −8.95747 −8.85853 −2.83075
213 −9.70187 −9.80577 −9.45962 −9.49673 −9.4834 −8.92099
214 −10.5467 −8.91969 −11.3958 −11.477 −11.7516 −5.78229
215 −9.90117 −9.0376 −12.5316 −11.4426 −10.1873 −5.38535
216 −10.6722 −8.91812 −9.03928 −10.7756 −10.0035 −2.928
217 −9.77875 −9.56794 −9.40501 −9.2114 −8.78821 −4.24964
218 −7.38222 −7.32184 −10.7567 −11.135 −10.9163 −5.74555
219 −9.57111 −9.9538 −9.1594 −9.72612 −9.10414 −5.56226
220 −10.7389 −9.03267 −12.0962 −12.7167 −13.2895 −6.09049
time (0.5745s) (0.331s) (0.995s) (2.8885s) (9.657s) (0.1075s)

Table 2: Error for increasing values of λ in equation (15). The last row shows the
average time needed for the method.
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theory they are of different order. However, the number N of sample points is of great
importance to the numerical result, especially, taking N too small leads to a large bias
in the results. It turned out that about N ≈ 1000 evaluations for each time step are
enough to achieve a sufficient accuracy of the Quasi-Monte Carlo integration involved, so
we only present results with N = 1000. The comparison above does not yet include the
time needed to obtain the solution, which varies greatly with the method. If we compare
the methods using the time-corrected error ST as defined in (14), figure 3 shows that
– although RKQMC methods need a lot more function evaluations – especially the
RKQMC1 method still can compete with the conventional Runge Kutta schemes for
large values of λ.

As a second example, we chose the delay differential equation

y′(t) = −1

2

(
3y

(
t− 1

2

)
+ 4 cos

(
y
(
t− π

10

))
− 5

)
+ 3 log(λ)2t cos(λt), t ≥ 0 (16)

y(t) = 1, t < 0 ,

which has an oscillating solution with increasing amplitude. Here again, for a slowly
oscillating differential equation conventional Runge Kutta schemes are favorable, while
RKQMC methods gain considerably for heavy oscillations, as figures 4 and 5 and table
3 show.

As a final example, we applied the RKQMC methods to the following delay differential
equation

y′(t) = π
λ

2

(
y

(
t− 2− 3

2λ

)
− y

(
t− 2− 1

2λ

))
, t ≥ 0 (17)

y(t) = sin(λtπ), t < 0 ,

with the exact solution y(t) = sin(λtπ), so the problem does not have discontinuities
in any derivative, since the initial condition is already the solution of the differential
equation. Because the k-th derivative of y(t) can only be bounded by λk, for large
λ the interpolation error can also only be bounded by a power of λ. One thus has to
expect an exploding error, and the solution method will be very unstable. An interesting
question in this case is if RKQMC methods – although still obtaining an exploding error
– behave at least a little better than conventional Runge Kutta. Or in other words, can
the averaging over the whole interval [tk, tk+1) delay the explosion of the error? Figures 6
and 7 show that while for conventional Runge Kutta schemes the error increases rapidly
already for λ > 210 (or even λ > 27), the RKQMC methods stay more or less stable
until λ > 213, and even then the error is several orders of magnitude smaller than with
conventional methods.
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Figure 4: RKQMC vs. conventional Runge-Kutta schemes for equation (16).
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Figure 5: Time-corrected comparison for equation (16).

Butcher Runge RKQMC1 RKQMC2 RKQMC3 RKQMC3
λ N = 1000 N = 1000 N = 1000 N = 10
25 −8.87234 −8.88586 −5.71718 −5.71687 −5.71446 −1.63038
26 −9.26313 −9.17274 −5.72643 −5.8531 −5.79093 −1.78973
27 −10.1041 −9.86726 −6.31692 −6.26188 −6.02894 −1.98767
28 −9.95295 −9.79758 −6.80873 −6.24588 −5.80225 0.31842
29 −11.208 −10.7435 −5.94728 −6.03407 −5.95347 0.17748
210 −11.5016 −11.6134 −5.19338 −3.91158 −4.56006 2.86029
211 −10.7611 −8.90505 −5.65698 −3.47692 −5.23753 1.29468
212 −10.6531 −5.24012 −3.95011 −3.41886 −4.53776 3.46736
213 −5.4083 −1.92602 −6.733 −6.71153 −7.15757 −0.33684
214 −2.39403 −2.37575 −3.23562 −3.83238 −4.34481 1.77534
215 −2.04463 −1.2864 −3.86274 −3.65393 −3.62819 2.62794
216 −2.24314 −1.66459 −1.00946 −0.9048 −1.49998 4.49528
217 −1.05771 −0.85625 −1.39275 −0.06356 −0.22052 4.10072
218 −0.42866 −0.42336 −1.11109 −1.2283 −1.71019 3.31797
219 −1.41526 −1.28994 −0.50625 −0.82309 −1.28871 3.3318
220 −1.97097 −0.15265 −2.66799 −3.7689 −3.32669 1.8979
time (0.914s) (0.52s) (1.317s) (3.9515s) (13.1045s) (0.144s)

Table 3: Error for increasing values of λ in equation (16)
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Figure 6: RKQMC can delay numerical unstabilities in heavily oscillating equations like
equation (17).

5 10 15 20
Log2HΛL5

10

15

Log2HST
Λ,HmethLL

RKQMC3, N=1000

RKQMC2, N=1000

RKQMC1, N=1000

Runge

Heun

Butcher

Figure 7: Time-corrected comparison for equation (17).

Butcher Runge RKQMC1 RKQMC2 RKQMC3 RKQMC3
λ N = 1000 N = 1000 N = 1000 N = 10
25 −0.03254 −0.02311 −0.56156 −0.5624 −0.5612 −0.23613
26 1.17245 2.86221 0.02865 0.02788 0.03007 0.33568
27 0.50327 3.21856 −0.57879 −0.59252 −0.61976 1.79124
28 4.34429 4.33091 0.20416 0.21056 0.20644 1.49253
29 4.82238 5.07044 0.13955 0.15332 0.13093 3.3962
210 1.2717 0.44702 0.00626 0.00308 −0.01275 3.98611
211 5.32135 9.6919 0.26602 0.19461 0.13048 4.64482
212 11.5943 14.8719 1.71566 1.68044 1.57747 7.51536
213 11.1378 15.3605 −0.14943 0.06415 −0.02259 7.20202
214 14.1873 15.9873 1.93997 1.99741 1.57252 11.7018
215 14.0843 15.7865 3.05771 3.47916 2.98297 13.5787
216 16.2482 16.7093 6.6045 5.70631 5.35894 14.4304
217 15.4825 16.0032 8.33202 7.58254 7.87936 17.3266
218 16.2581 18.0802 9.70491 8.74674 7.48048 17.3213
219 19.3875 20.7898 11.5075 11.1776 9.60934 17.2286
time (0.316s) (0.1815s) (0.669s) (1.977s) (6.486s) (0.0725s)

Table 4: All errors for equation (17). RKQMC methods stay stable for 28 ≤ λ ≤ 213,
where conventional Runge Kutta schemes become unstable.
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6 Conclusion

In this paper we successfully showed that the RKQMC methods by Stengle, Lécot,
Koudiraty and Coulibaly can also be applied to retarded differential equations. While
we already showed this in [7] for equations of one delayed argument, here we presented
a more general proof and extend it to equations of several retarded arguments. Our
numerical investigation showed, that for slowly varying differential equations, conven-
tional Runge Kutta methods have to be preferred over RKQMC schemes, but for heav-
ily oscillating equations or solutions, RKQMC methods can yield better results than
conventional schemes. Although the RKQMC schemes are more expensive as far as
computing time is concerned, a larger time step can be chosen. Furthermore, RKQMC
schemes may stay stable in a region where conventional Runge Kutta schemes already
give an exploding error. All in all, RKQMC solution schemes can be viewed as a good
complement to classical Runge Kutta schemes with Hermite interpolation for heavily
oscillating delay differential equations.
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