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Abstract

In this paper a collective risk reserve process of an insurance portfolio characterized by
a homogeneous Poisson claim number process, a constant premium flow and independent
and identically distributed claims is considered. In the presence of a non-linear dividend
barrier strategy and interest on the free reserve we derive equations for the probability
of ruin and the expected present value of dividend payments which give rise to several
numerical number-theoretic solution techniques. For various claim size distributions and
a parabolic barrier numerical tests and comparisons of these techniques are performed. In
particular, the efficiency gain obtained by implementing low-discrepancy sequences instead
of pseudorandom sequences is investigated.
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1 Introduction

Let {N(t) : t ∈ R+} denote the random process that counts the claims of an insurance
portfolio of a company up to time t and assume that N(t) is a homogeneous Poisson
process with intensity λ. Let further {Xn : n ∈ N} be a sequence of i.i.d. positive random
variables with distribution function F (y) representing the sizes of the successive claims
and let µ = E(Xi) < ∞. In a time interval [t, t + dt] the company receives the premium
c dt, where c > λµ, and in addition we assume that the company receives interest on its
reserves with a constant interest force i (for a general background in ruin theory see e.g.
Asmussen [1]). Let Tn (n ∈ N) denote the moment of occurrence of the nth claim.
We now extend this classical model by introducing a time-dependent dividend barrier bt,
such that whenever the value of the reserve Rt reaches bt, dividends are paid out to the
shareholders with intensity (c+Rt · i)− dbt and the surplus remains on the barrier, until
the next claim occurs. This means that the risk process develops according to

dRt = (c + i Rt) dt−XNt dNt if Rt < bt (1)
dRt = dbt −XNt dNt if Rt = bt. (2)

Together with the initial capital R0 = u, 0 ≤ u < b0 <∞, this determines the risk process
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Fig. 1. A sample path of Rt

{Rt, t ≥ 0} (cf. Figure 1). Of particular interest in this context are the survival probability
φ(u, b) = Pr{Rt ≥ 0 ∀ t ≥ 0 |R0 = u} and the expected value of the discounted dividend
payments W (u, b).
Dividend barrier models have a long history in risk theory [2,3]. In the case of a horizontal
dividend barrier bt ≡ bc = const, we have φ(u, b) = 0 ∀ 0 ≤ u ≤ b. Including a constant
interest force on the reserve in the model, Paulsen and Gjessing [4] calculated the
optimal value of bc that maximizes the expected value of the discounted dividend payments.
For linear dividend barriers bt = b + at Gerber [5] derived an upper bound for the
probability of ruin ψ(u, b) = 1−φ(u, b) by martingale methods and in [6] he obtained exact
solutions for ψ(u, b) and W (u, b) for exponentially distributed claim amounts; this result
was generalized by Siegl and Tichy [7] to arbitrary Erlang claim amount distributions,
see also Albrecher and Tichy [8]. In [9] non-linear dividend barrier models of the type

bt =
(
bm +

t

α

)1/m

(α > 0,m ≥ 1). (3)

were introduced and integro-differential equations for φ(u, b) and W (u, b) were derived.
The existence and uniqueness of the corresponding solutions was discussed and numerical
solution techniques were developed and tested for the case of an exponential claim size
distribution.
In this paper we extend the results of [9] in various directions in that we add a numerical
solution technique based on an iterative scheme, we allow for more general claim size
distributions and we consider continuously compounded interest on the free reserve.
In Section 2 we identify φ(u, b) and W (u, b) as solutions of boundary value problems for
integro-differential equations and also as fixed points of contracting integral operators
which gives rise to the development of efficient number-theoretic simulation techniques
based on Monte Carlo and Quasi-Monte Carlo methods. These are discussed in Section
3. In Section 4 we give numerical results for a parabolic dividend barrier. The various
simulation techniques are compared on a quantitative and qualitative basis. Finally the
efficiency gain obtained by implementing low-discrepancy sequences is investigated and the
sensitivity of the simulation results with respect to the model assumptions is discussed.

2 Integro-differential equations and integral operators

In the sequel we will consider dividend barriers of type (3) (note that m = 1 corresponds
to the linear barrier case). The probability of survival φ(u, b) for the surplus process given
by (1) and (2) can be expressed as the solution of a boundary value problem. Conditioning
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on the occurrence of the first claim, we get for u < b

φ(u, b) = (1− λdt)φ

(
u+ (c+ i u) dt,

(
bm +

dt

α

)1/m
)

+

+ λ dt

∫ u+(c+i u) dt

0
φ

(
u+ (c+ i u) dt− z,

(
bm +

dt

α

)1/m
)
dF (z). (4)

Taylor series expansion of (4) and division by dt shows that φ satisfies the equation

(c+ i u)
∂φ

∂u
+

1
αmbm−1

∂φ

∂b
− λφ+ λ

∫ u

0
φ(u− z, b)dF (z) = 0, (5)

which, for reasons of continuity, is valid for 0 ≤ u ≤ b. For u = b the same arguments can
be used to show that equation (5), with c+ i u replaced by 1

αm bm−1 , also holds. For b→∞
we additionally require the process to have the survivual probability φ(u) in the absence
of a barrier. Thus we obtain the boundary conditions

∂φ

∂u

∣∣∣
u=b

= 0, lim
b→∞

φ(u, b) = φ(u). (6)

Let furthermore W (u, b) denote the expected present value of the future dividend pay-
ments, which are discounted according to the riskless interest rate i, and stop when ruin
occurs. Then, in a similar way to (4), one can derive the integro-differential equation

(c+ i u)
∂W

∂u
+

1
αmbm−1

∂W

∂b
− (i+ λ)W + λ

∫ u

0
W (u− z, b)dF (z) = 0, (7)

with boundary condition ∂W
∂u

∣∣∣
u=b

= 1.

Remark 1: In principle, one could follow this approach for any dividend barrier function
bt = f(b, t) that is monotone increasing in t and satisfies

f(b, t) = f
(
f(b, t1), t− t1

)
∀ b > 0 and ∀ t > t1 > 0. (8)

The functional equation (8) is the well-known translation equation and for functions f(b, t)
which are monotone increasing in b and t and continuous in b, the general solution of (8)
is given by

f(b, t) = h
(
h−1(b) + t

)
,

where h(t) = f(b0, t) is some given initial function (see e.g. Aczél [10]). From h(t) =
(bm0 + t/α)

1
m we obtain (3) as a special case. Other solutions of (8) include for instance

f(b, t) = b+ at (linear barrier) or f(b, t) = (
√
b+ t)2 (quadratic barrier).

Remark 2: For the special case of exponentially distributed claim sizes it follows from
(5) and (7) that φ(u, b) and W (u, b) can be expressed as the solutions of boundary value
problems for second-order partial differential equations of hyperbolic type. However, due
to the structure of the boundary conditions this does not lead to a simplification of the
problem (cf. [9]).
Generalizing a procedure developed in [6] for the case of linear barriers, we first show
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that the boundary value problem (7) has a unique bounded solution. For that purpose,
we define an operator A by

Ag(u, b) =
∫ t∗

0
λe−(λ+i)t

∫ (c′+u)eit−c′

0
g

(
(c′ + u)eit − c′ − z,

(
bm +

t

α

)1/m
)
dF (z)dt+

+
∫ ∞

t∗
λe−(λ+i)t

∫ (bm+ t
α)1/m

0
g

((
bm +

t

α

)1/m

− z,

(
bm +

t

α

)1/m
)
dF (z)dt+

+
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
(c+ i u)eis − 1

mα
(
bm + s

α

)1−1/m

)
ds dt, (9)

with c′ = c/i. Here t∗ is the positive solution of (c′+u)eit−c′ =
(
bm + t

α

)1/m (this number
is unique for all m ≥ 1, since u < b). The solution W (u, b) of (7) with its initial condition
is a fixed point of the integral operator A. For any two bounded functions g1, g2

|Ag1(u, b)−Ag2(u, b)| ≤ ‖g1 − g2‖
∫ ∞

0
λe−(λ+i)tdt ≤ λ

λ+ i
‖g1 − g2‖ (10)

for arbitrary 0 ≤ u ≤ b < ∞, where ‖·‖ is the supremum norm on 0 ≤ u ≤ b < ∞, and
thus it follows that A is a contraction in the Banach space of bounded functions equipped
with the supremum norm, and the fixed point is unique by Banach’s theorem.
Unfortunately, the same approach does not allow to show the contraction property of
the corresponding integral operator for the probability of survival φ(u, b). However, if we
introduce a horizontal absorbing upper barrier bmax = const (i.e. if the surplus process
Rt ≥ bmax for some t > 0, it is absorbed, the dividend payments stop and the company
is considered to have survived), then one can derive contracting integral operators similar
to (9) for W (u, b) and φ(u, b). From an economic point of view, this slight modification of
the risk model (called Model B in the sequel) can be interpreted that the company will
then decide to pursue other forms of investment strategies.
Since these boundary value problems can not be solved analytically, there is a need for
effective algorithms to obtain numerical solutions. In this paper we focus on the develop-
ment of number-theoretic solution methods based on the corresponding integral operators
and on stochastic simulation, respectively.

3 Numerical solution techniques

The following three algorithms will be presented in terms of operator (9).

3.1 Double-recursive Algorithm

The fixed point of (9) can be approximated by applying the contracting integral operator A
k times to a starting function g(0)(u, b) := h(u, b) which we choose to be the inhomogeneous
term in the corresponding integral operator (where k is chosen according to the desired
accuracy of the solution):

g(k)(u, b) = Akg(0)(u, b),

g(0)(u, b) = h(u, b) :=
∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
(c+ i u)eis − 1

mα
(
bm + s

α

)1−1/m

)
ds dt.
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This leads to a 2k-dimensional integral for g(k)(u, b), which is calculated numerically using
Monte Carlo and Quasi-Monte Carlo methods. The Monte Carlo-estimator of W (u, b) for
given values of u and b then is

W (u, b) ≈ 1
N

N∑
n=1

g(k)
n (u, b) , (11)

where the g(k)
n (u, b) are calculated recursively for each n by

g(i)
n (u, b) = h(u, b) +

λ

λ+ i
·

·

{
F
(
(c′ + u)eit

i
1,n − c′

)(
1− e−(λ+i)t∗

)
g(i−1)
n

(c′ + u)eit
i
1,n − c′ − zi

1,n,

(
bm +

ti1,n

α

) 1
m

+

+ F

(bm +
ti2,n

α

) 1
m

 e−(λ+i)t∗g(i−1)
n

(bm +
ti2,n

α

) 1
m

− zi
2,n,

(
bm +

ti2,n

α

) 1
m

}.
(1 ≤ i ≤ k) and g(0)

n (u, b) = h(u, b). Here tij,n and zi
j,n (j = 1, 2) are determined according

to

t1 = −
log
(
1− w1

(
1− e−(λ+i)t∗

))
λ+ i

z1 = F−1
(
v1 · F

(
(c′ + u)eit − c′

))
(12)

t2 = t∗ − log(1− w2)
(λ+ i)

z2 = F−1

(
v2 · F

((
bm +

t2
α

) 1
m

))
. (13)

for (quasi-)random deviates vj , wj of the uniform distribution in the unit interval.
Since in every recursion step the function g is called twice, the number of evaluations of
g doubles in every recursion step. Thus, in order to keep the computations tractable, in
what we will call the double-recursive algorithm in the sequel, the double recursion is only
used for the first three recursive steps and for the remaining recursion steps the recursive
algorithm described in Section 3.2 is applied.

3.2 Recursive Algorithm

Instead of calculating the first two integrals occurring in operator (9) separately, one can
combine them to one integral. A suitable change of variables then leads to

Ag(u, b) = h(u, b)+∫ 1

0

∫ 1

0

λ

λ+ i
F (zmax(u, b, t)) g

(
zmax(u, b, t)− z,

(
bm +

t

α

) 1
m

)
dvdw (14)

where t and z are given by

t = − log(1− w)
(λ+ i)

, z = −F−1 (v · F (zmax(u, b, t))) (15)

and zmax(u, b, t) is defined as the minimum of the reserve and the dividend barrier at
time t. Note that for this algorithm, the number of integration points needed for a given
recursion depth is one eighth of the corresponding number required for the double-recursive
case.
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3.3 Iterative Algorithm

Another solution technique based on the integral operator (14) is to discretize the domain
of u and b by a grid (uj , bk), 0 ≤ j ≤ jmax, 0 ≤ k ≤ kmax. After assigning a suitable
initial value to each discretization point (uj , bk), the operator is applied sequentially to
each point (uj , bk) of the grid. The resulting approximative solution ĝ

(i)
j,k at point (uj , bk)

and iteration depth i is calculated from the values of ĝ(i−1) at depth (i − 1) by a two-
dimensional integral, which is evaluated by Monte Carlo and Quasi-Monte Carlo methods.
Since ĝ(i−1) is only defined for the discretization points (uj , bk), the function g in operator
(14) is replaced by a linear interpolation function I. Thus we have

ĝ
(0)
j,k =h(uj , bk)

ĝ
(i)
j,k =h(uj , bk) +

λ

λ+ i
·

1
N

N∑
n=1

F
(
zmax(uj , bk, t

i
n)
)
I

(
ĝ(i−1), zmax(uj , bk, t

i
n)− zi

n,

(
bmk +

tin
α

) 1
m

) (16)

for 1 ≤ i ≤ imax. The variables (tin, z
i
n) are obtained from the elements of a 2-dimensional

sequence according to (15), and the iteration depth imax is chosen according to the desired
accuracy of the approximation.

3.4 Simulation

Another way to obtain numerical solutions is stochastic simulation of the surplus process.
For that purpose we sample N paths of the risk reserve process and use the Monte Carlo
estimates φ(u, b) ≈ m

N and W (u, b) ≈ 1
N

∑N
k=1 v(k), where m is the number of simulated

paths for which ruin does not occur and v(k) is the sum of discounted dividend payments
of path k. We consider a simulation path as having survived, if it exceeds a given threshold
xmax, and so the process stops with probability 1. Using this stopping criterion, we over-
estimate (underestimate, resp.) the actual probability of survival φ(u, b) (W (u, b), resp.).
For sufficiently large xmax, however, this effect is negligible.

3.5 Quasi-Monte Carlo Approach

All the numerical solution techniques described above lead to the numerical evaluation of
integrals, which in the classical Monte Carlo algorithm is done by using pseudo-random
numbers. However, the use of deterministic uniformly distributed instead of pseudo-random
point sequences has proven to be an efficient extension of the classical Monte Carlo method.
A well-known measure for the uniformness of the distribution of a sequence {xn}1≤n≤N

in U s := [0, 1)s is the star-discrepancy

D∗
N (xn) = sup

I∈Js
0

∣∣∣∣A(xn; I)
N

− λs(I)
∣∣∣∣ ,

where Js
0 is the set of all intervals of the form [0, ~y) = [0, y1) × [0, y2) × . . . × [0, ys) with

0 ≤ yi < 1, i = 1, . . . , s and A(xn; I) is the number of points of the sequence {xn}1≤n≤N

that lie in I. λs(I) denotes the s-dimensional Lebesgue-measure of I.
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The notion of discrepancy is particularly useful for obtaining an upper bound for the error
of Quasi-Monte Carlo integration, since by the Koksma-Hlawka inequality, we have∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫

[0,1)s

f(u)du

∣∣∣∣∣ ≤ V (f)D∗
N (x1, . . . , xN ) . (17)

for any {x1, . . . , xN} ⊂ [0, 1)s and for any function f : [0, 1)s → R of bounded variation
V (f) in the sense of Hardy and Krause (see e.g. [11]). In contrast to error bounds in
classical Monte Carlo, (17) is a deterministic error bound. Especially for s not too large,
low discrepancy sequences, i.e. sequences for which

D∗
N (x1, . . . , xN ) ≤ Cs

(logN)s

N
, (18)

with an explicitly computable constant Cs holds, have turned out to be superior to pseudo-
Monte Carlo sequences in many applications. Typical examples are the Halton sequence
[12] and sequences based on (t,m, s)-nets such as the Sobol, Faure and Niederreiter-(t, s)
sequences [13–15].

4 Numerical Results for the parabolic case

In this section we present numerical results for a parabolic dividend barrier of the form
bt =

√
b2 + t/α and various claim amount distributions (with coinciding mean µ and

variance σ2). The domain of u and b in the following simulations is a grid in the triangle
(b = 0..[0.1]..1, u = 0..[0.1]..b), and the parameters are chosen in the following way: c = 1.5,
i = 0.1, α = 0.5, λ = γ = 1, µ = 1, σ2 = 0.5, imax = 66, bmax = 4. The recursion depth
for the recursive methods is k = 66. Moreover N = 66 000 (recursive method, simulation)
and N = 33 000 (iterative, double recursive method). Since exact values are not available,
we use a MC-estimator over 10 million paths for every choice of u and b.
All our QMC-calculations are actually hybrid Monte Carlo estimates, i.e. the initial 50
dimensions are generated by a 50-dimensional QMC sequence and the remaining dimen-
sions are generated by a pseudo-random number generator.The use of hybrid Monte Carlo
sequences has proven to be a successful modification of the QMC-technique, since for low
discrepancy sequences typically the number of points needed to obtain a satisfying degree
of uniformness dramatically increases with the dimension. Moreover, due to the nature of
our risk process, the initial dimensions of the sequence have a higher impact on the solu-
tion than higher dimensions. Throughout this paper, we use ran2 as our pseudo-random
number generator, which basically is an improved version of a minimal standard generator
based on a multiplicative congruential algorithm [16].
The different methods and sequences used are compared via the mean square error (MSE)

S =

√√√√ 1
|P |

∑
(u,b)∈P

(
g(u, b)− g̃(u, b)

)2
, (19)

where g(u, b) and g̃(u, b) denote the exact and the approximated value, respectively, and
the set P is the grid in the triangular region 0 ≤ u ≤ b ≤ 1 described above. To quantify
the effect of using a low discrepancy sequence, we perform a regression analysis by fitting

log2(S) = a0 + a1 log2(N) + a2 log2(log2(N)) + ε (20)
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to the data using a least square fit. Note that Koksma-Hlawka’s inequality (17) could be
interpreted as implying a1 = −1 and a2 = s, where s is the dimension of the sequence
used. However, since we use a hybrid sequence and since the effective dimension is smaller
than the theoretical dimension, the values of a1 and a2 deviate from the ones above.

4.1 Error analysis of the survival probability

The computations show that for Model B (introduced in Section 2), the convergence in
terms of N of the approximations to the exact solution is much better for the Halton and
Sobol sequence then for MC-estimators (see Fig. 2 for Pareto claim sizes; other distribu-
tions show a similar behavior). In absence of an absorbing upper barrier bmax, this effect
does not occur (the effective dimension of the latter problem is much larger).

4.2 Error analysis of the expected value of the dividend payments

The simulation results for the expected value of the dividends show a clear advantage of
QMC methods over MC integration (both for Model A and B). As an illustration, Fig. 3
depicts the MSE of the simulation results as a function of N for the Weibull distribution.
While for small N , the Sobol sequence clearly outperforms the other sequences in terms
of the MSE for given N , the Halton sequence used in the recursive algorithm shows a nice
convergence rate for large N . This effect can be quantified by introducing the efficiency
gain N∗

MC(S)/N∗
i (S), where N∗

MC(S) is the number of paths needed in the Monte Carlo
simulation to reach a given error of S, and N∗

i (S) is the corresponding N using an alter-
native method. Fig. 4 shows the efficiency gains as a function of N .
If one considers the approximation error as a function of calculation time, the double
recursive algorithm is still competitive (see Fig. 5); however, the recursive method using
Sobol’s sequence seems preferable. Furthermore, Fig. 5 allows for a comparison of the it-
erative method with recursive and simulation methods in terms of efficiency.
Since the effective dimension is much smaller in Model B, one can expect low-discrepancy
sequences to outperform pseudo-random sequences to an even larger extent. Simulations
show that this is indeed the case and for small N the Sobol sequence shows the best per-
formance, whereas for larger N Niederreiter-(t, s)-sequences are preferable (on the other
hand, Niederreiter-(0, s)- and Faure sequences turn out not to be suited for the integrands
of our problems - their performance is rather poor). The performance of Niederreiter-(t, s)-
sequences can still be improved by starting the sequence at n = pk with k being at least
the maximum degree of the polynomials used to generate the sequence and p denoting
the base of the construction (this effect is known as the leading-zeros phenomenon, see
also [17,18]). Table 1 shows the approximation errors of the various solution methods for
a Weibull claim size distribution. A complete list of exact values and simulation results
can be obtained from the authors.

Monte Carlo Halton Niederr. (t,s) Sobol

Simulation S 0.00533089 0.000849476 0.000803501 0.000875673

‖∆‖∞ 0.0136 0.00242 0.00216 0.00203

Recursive S 0.00257658 0.000570681 0.000486129 0.000688766

‖∆‖∞ 0.00652 0.00178 0.00158 0.00207

Double Rec. S 0.00241979 0.000619308 0.000643352 0.000921779

‖∆‖∞ 0.00572 0.00191 0.00196 0.00243

Iterative S 0.016305 0.0170657 0.0169917 0.016983

‖∆‖∞ 0.02382 0.02149 0.02138 0.02138

Table 1: MSE and maximum error for W (u, b) (Weibull distribution, Model B)
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4.3 Model Analysis

In order to investigate the sensitivity of φ(u, b) and W (u, b) to the claim size distribution
and to the consideration of interest rates in the model, we fix a value of b and plot φ(u, b)
and W (u, b) against u for i = 0.1 and i = 0, resp. (see Fig. 6 and 7). Fig. 8 shows the
survival probability for a larger range of u (where the heavy-tail property of the claim
size distribution becomes relevant). Our simulations show that, in contrast to W (u, b), for
φ(u, b) the choice of the claim size distribution in the model is important. Both φ(u, b)
and W (u, b) are sensitive to the inclusion of interest on the free reserve in the model.
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Fig. 2. MSE of φ(u, b) estimates as a function of N (Pareto distribution, Model B)
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Fig. 3. MSE of W (u, b) (Weibull distribution, Model A)
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Fig. 5. MSE of W (u, b) vs. calculation times in seconds (Pareto distribution, Model A)
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Fig. 8. Log-log plot of ψ(u, 30) = 1− φ(u, b) in Model A
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