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Abstract

In this paper we consider a generalized version of the classical model for the
collective surplus process of an insurance portfolio. In the presence of dividend
payments according to a non-linear barrier strategy and interest on the free re-
serve we derive equations for the probability of ruin and the expected present
value of dividend payments which give rise to several numerical number-theoretic
solution techniques. For various claim size distributions and a parabolic barrier
numerical tests and comparisons of these techniques are performed. In particular,
the efficiency gain obtained by implementing low-discrepancy sequences instead
of pseudorandom sequences is investigated.

1 Introduction

Let {N(t) : t ∈ R+} denote the random process that counts the claims of an insurance
portfolio of a company up to time t and assume that N(t) is a homogeneous Poisson
process with intensity λ. Let further {Xn : n ∈ N} be a sequence of independent identi-
cally distributed positive random variables with distribution function F (y) representing
the sizes of the successive claims and let µ = E(Xi) < ∞. In a time interval [t, t + dt]
the company receives the premium c dt, where c > λ

∫∞
0
y dF (y). In addition to the

premium income, we assume that the company also receives interest on its reserves with
a constant interest force i (for i = 0 we have the classical ruin model; for a general
background in ruin theory see for instance Gerber [16], Thorin [26] or more recently
DeVylder [10] and Asmussen [5]). Let Tn (n ∈ N) denote the moment of occurrence
of the nth claim. If we introduce the purely discontinuous measure XNt dNt which puts
a weight equal to XNt at times Tn (n ∈ N), then the value of the reserve at time t,
denoted by Rt, satisfies

dRt = c dt+Rt · i dt−XNt dNt
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(see for example Delbaen and Haezendonck [11]).
We now extend this model by introducing a time-dependent dividend barrier bt, such
that whenever the value of the reserve Rt reaches bt, dividends are paid out to the
shareholders with intensity (c + Rt · i) − dbt and the surplus remains on the barrier,
until the next claim occurs. This means that the risk process develops according to

dRt = (c + i Rt) dt−XNt dNt if Rt < bt (1)

dRt = dbt −XNt dNt if Rt = bt. (2)

Together with the initial capital R0 = u, 0 ≤ u < b0 < ∞, this determines the risk
process {Rt, t ≥ 0} (cf. Figure 1).
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Figure 1: A sample path of Rt

The following quantities are of particular interest in this context: The survival probabil-
ity is defined as the probability that the reserve of the portfolio never becomes negative,
i.e.

φ(u, b) = Pr{Rt ≥ 0 ∀ t ≥ 0 |R0 = u},
where u ≥ 0 denotes the initial reserve of the portfolio. Correspondingly the probability
of ruin is defined by ψ(u, b) = 1− φ(u, b). Another important quantity is the expected
sum of discounted dividend payments W (u, b), i.e. the expected present value of all
dividends paid until ruin occurs.

Dividend barrier models have a long history in risk theory (see e.g. [8], [16]). Ger-
ber [15] showed that barrier dividends constitute a complete family of Pareto-optimal
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dividends. In the case of a horizontal dividend barrier bt ≡ bc = const., we have
φ(u, b) = 0 ∀ 0 ≤ u ≤ b. Including a constant interest force on the reserve in the model,
Paulsen and Gjessing [21] calculated the optimal value of bc that maximizes the ex-
pected value of the discounted dividend payments in this situation. For linear dividend
barriers bt = b + at Gerber [14] derived an upper bound for the probability of ruin
by martingale methods and in [17] he obtained exact solutions for the probability of
ruin and the expected sum of discounted dividend payments W (u, b) for exponentially
distributed claim amounts; this result was generalized by Siegl and Tichy [24] to
arbitrary Erlang claim amount distributions, see also Albrecher and Tichy [4].

In [2] non-linear dividend barrier models of the type

bt =

(
bm +

t

α

)1/m

(α, b > 0,m ≥ 1). (3)

were introduced and integro-differential equations for φ(u, b) and W (u, b) were derived.
The existence and uniqueness of the corresponding solutions was discussed and tech-
niques for numerical solutions were developed and tested for the case of an exponential
claim size distribution. In [3] this approach was applied to more general claim size dis-
tributions and at the same time continuously compounded interest on the free reserve
was included in the model.

This paper is a more general and extended version of [3]. In Section 2 we identify φ(u, b)
and W (u, b) as solutions of boundary value problems for integro-differential equations
and also as fixed points of contracting integral operators which gives rise to the devel-
opment of efficient number-theoretic simulation techniques based on Monte Carlo and
Quasi-Monte Carlo methods. These are discussed in Section 3. In Section 4 we give
detailed numerical results for a parabolic dividend barrier. The various simulation tech-
niques are compared on a quantitative and qualitative basis. Finally the efficiency gain
obtained by implementing various low-discrepancy sequences is investigated and the
sensitivity of the simulation results with respect to the model assumptions is discussed.

2 Integro-differential equations and integral opera-

tors

In the sequel we will consider dividend barriers of type (3). Note that m = 1 corresponds
to the linear barrier case.
The probability of survival φ(u, b) for the surplus process given by (1) and (2) can
then be expressed as the solution of a boundary value problem in the following way:
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Conditioning on the occurrence of the first claim, we get for u < b

φ(u, b) = (1− λdt)φ

(
u+ (c+ i u) dt,

(
bm +

dt

α

)1/m
)

+

+ λ dt

∫ u+(c+i u) dt

0

φ

(
u+ (c+ i u) dt− z,

(
bm +

dt

α

)1/m
)
dF (z). (4)

Taylor series expansion of (4) and division by dt shows that φ satisfies the equation

(c+ i u)
∂φ

∂u
+

1

αmbm−1

∂φ

∂b
− λφ+ λ

∫ u

0

φ(u− z, b)dF (z) = 0, (5)

which, for reasons of continuity, is valid for 0 ≤ u ≤ b. For u = b the same arguments
can be used to show that equation (5), with c+ i u replaced by 1

αm bm−1 , also holds. Thus
we obtain the boundary condition

∂φ

∂u

∣∣∣
u=b

= 0. (6)

A further natural requirement is

lim
b→∞

φ(u, b) = φ(u), (7)

where φ(u) is the probability of survival in absence of the barrier.

Let furthermore W (u, b) denote the expected present value of the future dividend pay-
ments, which are discounted according to the riskless interest rate i, and stop when ruin
occurs. Then, in a similar way to (4), one can derive the integro-differential equation

(c+ i u)
∂W

∂u
+

1

αmbm−1

∂W

∂b
− (i+ λ)W + λ

∫ u

0

W (u− z, b)dF (z) = 0, (8)

with boundary condition
∂W

∂u

∣∣∣
u=b

= 1. (9)

Remark 1: In principle, one could follow this approach for any dividend barrier function
bt = f(b, t) that is monotone increasing in t and satisfies

f(b, t) = f
(
f(b, t1), t− t1

)
∀ b > 0 and ∀ t > t1 > 0. (10)

The functional equation (10) is the well-known translation equation and for functions
f(b, t) which are monotone increasing in b and t and continuous in b, the general solution
of (10) is given by

f(b, t) = h
(
h−1(b) + t

)
,

4



where h(t) = f(b0, t) is some given initial function (see e.g. Aczél [1]). From h(t) =

(bm0 + t/α)
1
m we obtain (3) as a special case. Other solutions of (10) include for instance

f(b, t) = b+ at (linear barrier) or f(b, t) = (
√
b+ t)2 (quadratic barrier).

Remark 2: For the special case of exponentially distributed claim sizes it follows from
(5) and (8) that φ(u, b) and W (u, b) can be expressed as the solutions of boundary value
problems for second-order partial differential equations of hyperbolic type. However,
due to the structure of the boundary conditions this does not lead to a simplification of
the problem (cf. [2]).

Following a procedure developed by Gerber [17] for the case of linear barriers, we
first show that the boundary value problem (8) together with (9) has a unique bounded
solution. For that purpose, we define an operator A by

Ag(u, b) =

∫ t∗

0

λe−(λ+i)t

∫ (c′+u)eit−c′

0

g

(
(c′ + u)eit − c′ − z,

(
bm +

t

α

)1/m
)
dF (z)dt+

+

∫ ∞

t∗
λe−(λ+i)t

∫ (bm+ t
α)

1/m

0

g

((
bm +

t

α

)1/m

− z,

(
bm +

t

α

)1/m
)
dF (z)dt+

+

∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
(c+ i u)eis − 1

mα
(
bm + s

α

)1−1/m

)
ds dt, (11)

with c′ = c/i. Here t∗ is the positive solution of (c′ + u)eit − c′ =
(
bm + t

α

)1/m
(this

number is unique for all m ≥ 1, since u < b). The solution W (u, b) of (8) with its initial
condition (9) is a fixed point of the integral operator A. For any two bounded functions
g1, g2

|Ag1(u, b)− Ag2(u, b)| ≤ ‖g1 − g2‖
∫ ∞

0

λe−(λ+i)tdt ≤ λ

λ+ i
‖g1 − g2‖ (12)

for arbitrary 0 ≤ u ≤ b < ∞, where ‖·‖ is the supremum norm on 0 ≤ u ≤ b < ∞,
and thus it follows that A is a contraction and the fixed point is unique by Banach’s
theorem.

The integral operator (11) does not only prove the existence and uniqueness of a solution
of (8) and (9), but also allows for the development of numerical solution algorithms
taking advantage of the contraction map (see Section 3).

Unfortunately, the same approach does not allow to show the contraction property
of the corresponding integral operator for the probability of survival φ(u, b). We will
see in Section 3, that by stochastic simulation of the risk reserve process one still can
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obtain numerical solutions for φ(u, b) in a satisfying way. But especially for efficiency
comparison purposes of the various numerical solution methods it would be nice to
have such a contracting integral operator available. Thus we also consider a slight
modification of our risk model in that we introduce an absorbing upper barrier bmax ≡
const, i.e. if the surplus process Rt ≥ bmax for some t > 0, it is absorbed, the dividend
payments stop and the company is considered to have survived. From an economic
point of view this can be interpreted that the company will then decide to pursue other
forms of investment strategies. Mathematically, this model has some nice features (e.g.
the process stops in finite time with probability 1). In the sequel we will refer to this
modified version as Model B. The boundary value problem for the probability of survival
can then be formulated by (5), (6) and

φ(u, bmax) =
φ(u)

φ(bmax)
, (13)

where 0 ≤ u ≤ b ≤ bmax and as before φ(u) is the probability of survival in absence of
the barrier.
In Model B we can now proceed to obtain a contraction map for the probability of
survival as its fixed point: Like in equation (11), let t∗ be the time when the surplus
would reach the dividend barrier given that no claim occurs. Let furthermore t∗∗ =
α(bmmax − bm) be the time when the dividend barrier reaches the absorbing barrier, and

t̃ =
1

i
log

(
c+ i bmax

c+ i u

)
the time when the surplus would reach the absorbing barrier in the absence of a dividend
barrier and of claims. As the dividend barrier is an increasing function on R+, t∗∗ is
uniquely determined, just as is t̃. Combining the two possible scenarios 0 ≤ t∗∗ ≤ t̃ ≤ t∗

and 0 ≤ t∗ ≤ t̃ ≤ t∗∗ (depending on the values of u and b), we define the operator A as

Aφ(u, b) =

∫ T

0

λe−λt

∫ zmax(u,b,t)

0

φ

(
zmax(u, b, t)− z,

(
bm +

t

α

) 1
m

)
dF (z) dt+ e−λT ,

(14)
where T = max

(
t̃, t∗∗

)
is the (finite) time when the surplus process reaches the absorbing

upper barrier bmax in the absence of claims, and

zmax(u, b, t) = min

(
(c′ + u)eit − c′,

(
bm +

t

α

) 1
m

)
. (15)

Let φ1 and φ2 now be two bounded functions on 0 ≤ u ≤ b ≤ bmax, then

|Aφ1(u, b)− Aφ2(u, b)| ≤ ‖φ1 − φ2‖
∫ T

0

λe−λtdt = ‖φ1 − φ2‖
(
1− e−λT

)
.
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Since T = T (u, b) < M < ∞, this operator is a contraction, and Banach’s fixed point
theorem establishes the existence and uniqueness of the solution φ(u, b) in Model B.

Correspondingly, the contraction map for the expected sum of dividend payments in
Model B is given by

Ag(u, b) =

∫ t∗

0

λe−(λ+i)t

∫ (c′+u)eit−c′

0

g

(
(c′ + u)eit − c′ − z,

(
bm +

t

α

)1/m
)
dF (z)dt+

+

∫ t∗∗

t∗
λe−(λ+i)t

∫ (bm+ t
α)

1/m

0

g

((
bm +

t

α

)1/m

− z,

(
bm +

t

α

)1/m
)
dF (z)dt+

+

∫ t∗∗

t∗
e−(λ+i)t

(
(c+ i u)eit − 1

mα
(
bm + t

α

)1−1/m

)
dt, (16)

if t∗∗ > t∗ and Ag(u, b) = 0 otherwise, because then the surplus reaches the absorbing
barrier before the dividend barrier. The last term in (16) represents the dividends that
are paid out until t∗∗ and is a simplification of the original expression

∫ t∗∗

t∗
λe−λt

∫ t

t∗
e−is

(
(c+ i u)eit − 1

mα
(
bm + s

α

)1−1/m

)
ds dt+

∫ ∞

t∗∗
λe−λt

∫ t∗∗

t∗
e−is

(
(c+ i u)eit − 1

mα
(
bm + s

α

)1−1/m

)
ds dt.

From (16) it follows that

‖Ag1(u, b)− Ag2(u, b)‖ ≤
λ

λ+ i

(
1− e−(λ+i)t∗∗

)
‖g1 − g2‖ ,

for any two bounded functions g1, g2 and we again have a contraction in the Banach space
of bounded functions equipped with the supremum norm, which implies the existence
and uniqueness of the solution.

Since these boundary value problems can not be solved analytically, there is a need
for effective algorithms to obtain numerical solutions. In this paper we focus on the
development of number-theoretic solution methods based on the corresponding integral
operators and on stochastic simulation, respectively.
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3 Numerical solution techniques

The following three algorithms are presented in terms of operator (11). However, the
adaptation to the other integral operators introduced above is straight-forward.

3.1 Double-recursive Algorithm

Following a technique that was already used in Tichy [27], the fixed point of (11) can
be approximated by applying the contracting integral operator A k times to a starting
function h(u, b) which we choose to be the inhomogeneous term in the corresponding
integral operator (where k is chosen according to the desired accuracy of the solution):

g(k)(u, b) = Akg(0)(u, b),

g(0)(u, b) = h(u, b) :=

∫ ∞

t∗
λe−λt

∫ t

t∗
e−is

(
(c+ i u)eis − 1

mα
(
bm + s

α

)1−1/m

)
ds dt.

This leads to a 2k-dimensional integral for g(k)(u, b), which is calculated numerically
using Monte Carlo and Quasi-Monte Carlo methods. For that purpose we transform
the integration domain of operator (11) into the unit cube:

Ag(u, b) = h(u, b) +
λ

λ + i
·

·

[(
1− e−(λ+i)t∗

) 1∫
0

1∫
0

g

(
(c′ + u)eit1 − c′ − z1,

(
bm +

t1
α

) 1
m

)
· F
(
(c′ + u)eit1 − c′

)
dv1dw1

+ e−(λ+i)t∗
1∫

0

1∫
0

g

((
bm +

t2
α

) 1
m

− z2,

(
bm +

t2
α

) 1
m

)
· F

((
bm +

t2
α

) 1
m

)
dv2dw2

]

with

t1 = −
log
(
1− w1

(
1− e−(λ+i)t∗

))
λ+ i

z1 = F−1
(
v1 · F

(
(c′ + u)eit − c′

))
(17)

t2 = t∗ − log(1− w2)

(λ+ i)
z2 = F−1

(
v2 · F

((
bm +

t2
α

) 1
m

))
. (18)

The Monte Carlo-estimator of W (u, b) for given values of u and b is

W (u, b) ≈ 1

N

N∑
n=1

g(k)
n (u, b) , (19)
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where the g
(k)
n (u, b) are calculated recursively for each n by

g(0)
n (u, b) = h(u, b)

and

g(i)
n (u, b) = h(u, b) +

λ

λ+ i
·

·

{
F
(
(c′ + u)eiti1,n − c′

) (
1− e−(λ+i)t∗

)
g(i−1)

n

(
(c′ + u)eiti1,n − c′ − zi

1,n,

(
bm +

ti1,n

α

) 1
m

)
+

+ F

((
bm +

ti2,n

α

) 1
m

)
e−(λ+i)t∗g(i−1)

n

((
bm +

ti2,n

α

) 1
m

− zi
2,n,

(
bm +

ti2,n

α

) 1
m

)}
.

Here tij,n and zi
j,n (j = 1, 2) are determined according to (17) and (18) for (quasi-)random

deviates vj, wj of the uniform distribution in the unit interval (1 ≤ i ≤ k).

Since in every recursion step the function g is called twice, the number of evaluations
of g doubles in every recursion step. Thus, in order to keep the computations tractable,
in what we will call the double-recursive algorithm in the sequel, the double recursion
is only used for the first three recursive steps and for the remaining recursion steps the
recursive algorithm described in Section 3.2 is applied.

3.2 Recursive Algorithm

Instead of calculating the first two integrals occurring in operator (11) separately, one
can combine them to one integral. A suitable change of variables then leads to

Ag(u, b) = h(u, b)+∫ 1

0

∫ 1

0

λ

λ+ i
F (zmax(u, b, t)) g

(
zmax(u, b, t)− z,

(
bm +

t

α

) 1
m

)
dvdw (20)

where t and z are given by

t = − log(1− w)

(λ+ i)

z = −F−1 (v · F (zmax(u, b, t)))

(21)

and zmax(u, b, t) is determined by (15). The integral operator (20) is now applied k times
onto g(0), and the resulting multidimensional integral g(k)(u, b) is again approximated
by

g(k)(u, b) ≈ 1

N

N∑
n=1

g(k)
n (u, b), (22)
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where each g
(k)
n (u, b) (n = 1, . . . , N) is based on a pseudo-random (or quasi-random,

resp.) point xn ∈ [0, 1]2k and calculated by the recursion

g
(0)
k (u, b) = h(u, b),

g(i)
n (u, b) =

λ

λ+ i
F
(
zmax(u, b, t

i
n)
)
g(i−1)

n

(
zmax(u, b, t

i
n)− zi

n,

(
bm +

tin
α

) 1
m

)
+ h(u, b),

with 1 ≤ i ≤ k. tin and zi
n are given by (21) with v and w being the value of the

(2i)-th and (2i + 1)-th, component of xn, respectively. Note that for this algorithm,
the number of integration points needed for a given recursion depth is one eighth of the
corresponding number required for the double-recursive case.

3.3 Iterative Algorithm

Another solution technique based on the integral operator (20) is to discretize the domain
of u and b by a grid (uj, bk), 0 ≤ j ≤ jmax, 0 ≤ k ≤ kmax. After assigning a suitable
initial value to each discretization point (uj, bk), the operator is applied sequentially

to each point (uj, bk) of the grid. The resulting approximative solution ĝ
(i)
j,k at point

(uj, bk) and iteration depth i is calculated from the values of ĝ(i−1) at depth (i − 1) by
a two-dimensional integral, which is evaluated by Monte Carlo and Quasi-Monte Carlo
methods. Since ĝ(i−1) is only defined for the discretization points (uj, bk), the function

g(zmax(u, b, t)−z, (bm + t/α)1/m) in operator (20) is replaced by an interpolation function

I(ĝ(i−1), zmax(u, b, t)− z, (bm + t/α)1/m) defined in (24). Thus we have

ĝ
(0)
j,k =h(uj, bk)

ĝ
(i)
j,k =h(uj, bk) +

λ

λ+ i
·

1

N

N∑
n=1

F
(
zmax(uj, bk, t

i
n)
)
I

(
ĝ(i−1), zmax(uj, bk, t

i
n)− zi

n,

(
bmk +

tin
α

) 1
m

) (23)

for 1 ≤ i ≤ imax. The variables (tin, z
i
n) are obtained from the elements of a 2-dimensional

sequence according to (21), and the iteration depth imax does not have to be fixed in
advance but may be chosen according to the desired accuracy of the approximation.

In our calculations we use a linear interpolation function for approximating the value of
g(i) at point (u, b) with uj ≤ u ≤ uj+1 and bk ≤ b ≤ bk+1:

I(ĝ(i), u, b) =

(
1− u− uj

uj+1 − uj

)(
1− b− bk

bk+1 − bk

)
ĝ

(i)
j,k +

u− uj

uj+1 − uj

b− bk
bk+1 − bk

ĝ
(i)
j+1,k+1+(

1− u− uj

uj+1 − uj

)
b− bk

bk+1 − bk
ĝ

(i)
j,k+1 +

u− uj

uj+1 − uj

(
1− b− bk

bk+1 − bk

)
ĝ

(i)
j+1,k . (24)
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If uj+1 > bk (i.e. the left upper corner of the surrounding rectangle lies above u = b and

thus outside the valid domain of g), then g
(i)
j+1,k needs to be replaced by

g
(i)
j,k + g

(i)
j+1,k+1 − g

(i)
j,k+1

in (24) meaning that the plane defined by the remaining three corners is then used for
the linear interpolation. If (u, b) lies outside the area that is covered by the grid, the
nearest rectangle ((uj, bk), (uj+1, bk+1)) covered by the grid is used for extrapolation by
(24).

3.4 Simulation

Another way to obtain numerical solutions is stochastic simulation of the surplus process.
For that purpose we sample N paths of the risk reserve process in the following way:
Starting with t0 := 0, b0 := b and x0 := u, where u is the initial reserve of the insurance
portfolio, we successively generate exponentially distributed random variables t̃j with
parameter λ for the time until the next claim occurs and set tj+1 := tj + t̃j (j ∈ N). The
claim amount zj is then sampled from the corresponding claim size distribution by the

inversion method, and the reserve after the claim is xj+1 := min{(c′ + xj)e
it̃j − c′, (bmj +

t̃j/α)1/m} − zj. Due to the structure of the dividend barrier, we can reset the origin to

tj+1 in every step, if we also set bj+1 =
(
bmj +

t̃j
α

)1/m

. We then have to discount the

dividend payments between the j-th and (j + 1)-th claims by the factor e−itj .

A simulation estimate for the survival probability φ(u, b) can now be obtained by

φ(u, b) ≈ m

N
,

where m is the number of paths for which ruin does not occur (i.e. xj > 0 ∀ j). We
consider a path as having survived, if for some j the condition xj > xmax is fulfilled,
where xmax is a sufficiently large threshold. This can be viewed as an absorbing hori-
zontal barrier at xmax, and so the process stops with probability 1. Using this stopping
criterion, we overestimate the actual probability of survival φ(u, b); for sufficiently large
xmax, however, this effect is negligible.

For the simulation of the expected value of the dividend payments, we proceed as de-
scribed above and whenever the process reaches the dividend barrier, i.e. (c′ + xj)e

it̃j −
c′ > (bmj + t̃j/α)

1
m , we need to calculate the amount of dividends that are paid until the

next claim j occurs:

vj := vj−1 + e−itj

∫ t̃j

t∗
e−is

(c+ ixj)e
is − 1

mα
(
bmj + s

α

)1− 1
m

 ds, j ≥ 1
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and v0 = 0, where t∗ is the positive solution of (c′ + xj)e
i t − c′ =

(
bmj + t

α

)1/m
, i.e.

the time when the process reaches the dividend barrier. The process is stopped, if ruin
occurs (i.e. xj < 0 for some j) or at some sufficiently large time tmax, after which the
expected value of discounted dividends becomes negligible due to the discount factor
e−it. Let v(k) now be the final value of vj for path k. The expected value of the dividends
is then approximated by

W (u, b) ≈ 1

N

N∑
k=1

v(k) .

3.5 Quasi-Monte Carlo Approach

All the numerical solution techniques described above lead to the numerical evaluation
of integrals, which in the classical Monte Carlo algorithm is done by using pseudo-
random numbers. However, the use of deterministic uniformly distributed instead of
pseudo-random point sequences has proven to be an efficient extension of the classical
Monte Carlo method. A well-known measure for the uniformness of the distribution of
a sequence {xn}1≤n≤N in U s := [0, 1)s is the star-discrepancy

D∗
N(xn) = sup

I∈Js
0

∣∣∣∣A(xn; I)

N
− λs(I)

∣∣∣∣ ,
where Js

0 is the set of all intervals of the form [0,y) = [0, y1)× [0, y2)× . . .× [0, ys) with
0 ≤ yi < 1, i = 1, . . . , s and A(xn; I) is the number of points of the sequence {xn}1≤n≤N

that lie in I. λs(I) denotes the s-dimensional Lebesgue-measure of I.

The notion of discrepancy is particularly useful for obtaining an upper bound for the
error of Quasi-Monte Carlo integration, since by the Koksma-Hlawka inequality, we have∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫

[0,1)s

f(u)du

∣∣∣∣∣ ≤ V ([0, 1)s, f)D∗
N (x1, . . . , xN) . (25)

for any set of points {x1, . . . , xN} ⊂ [0, 1)s and for any function f : [0, 1)s → R of
bounded variation V ([0, 1)s, f) in the sense of Hardy and Krause (see e.g. [12]).
This error bound is deterministic (in contrast to error bounds obtainable for classical
Monte Carlo). Especially for s not too large, certain Quasi-Monte Carlo sequences have
turned out to be superior to pseudo-Monte Carlo sequences in many applications. This
is in particular the case for so-called low discrepancy sequences, i.e. sequences for which

D∗
N (x1, . . . , xN) ≤ Cs

(logN)s

N
, (26)

with an explicitly computable constant Cs, holds. Bounds for Cs are usually pessismistic
and often the actual error made by Quasi-Monte Carlo integration is much lower than
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the bound implied by Cs (see e.g. [9]). Some low discrepancy sequences will be given in
the sequel:

• The Halton sequence [18] is defined as a sequence of vectors in U s based on the
digit representation of n in base pi

ξn = (bp1(n), bp2(n), . . . , bps(n)), (27)

where pi is the ith prime number and bp(n) is the digit reversal function for base
p given by

bp(n) =
∞∑

k=0

nkp
−k−1, n =

∞∑
k=0

nkp
k,

where the nk are integers. One could also use pairwise coprime base numbers, but
the error estimate turns out to be the best possible for prime bases pn.

Better error bounds can be obtained for low-discrepancy sequences based on so-called
(t,m, s)-nets or nets for short. These nets are based on the b-adic representation of
vectors in U s. Instead of optimizing the discrepancy itself, one considers the discrepancy
with respect to elementary intervals J in base b only, i.e. J =

∏s
i=1[aib

−di , (ai + 1)b−di)
with integers di ≥ 0 and integers 0 ≤ ai < bdi for 1 ≤ i ≤ s, and tries to construct point
sequences in U s such that the discrepancy with respect to these intervals J is optimal
for subsequences of length N = bm.
Let #(J,N) denote the number of points of a sequence {xn}1≤n≤N that lie in J . A point
set P with card(P) = bm is now called a (t,m, s)-net, if

#(J, bm) = bt

for every elementary interval J with λs(J) = bt−m. The parameter t is a quality param-
eter. For t = 0 we have the minimal discrepancy of the point set P with respect to the
family of elementary intervals.

Definition: Let t ≥ 0 be an integer. A sequence ξ1, ξ2, . . . of points in U s is called a
(t, s)-sequence in base b, if for all integers k ≥ 0 and m > t, the point set consisting of
the ξn with kbm < n ≤ (k + 1)bm is a (t,m, s)-net in base b.

Examples of (t,m, s)-nets are:

• The Sobol Sequence is a (t, s)-sequence in base 2 with values t that depend on s.
For a construction of this sequence we refer to [25].

• Faure sequences are low-discrepancy sequences for which Cs tends to zero for
s→∞ (see e.g. [13]).
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• The Niederreiter sequences (cf. [20]) yield (t, s)-sequences in arbitrary base; among
them there are (0, s)-sequences in prime power bases b ≥ s. In particular, for
Niederreiter sequences the constant Cs in (26) tends to zero for s→∞ .

4 Numerical Results for the parabolic case

In this section we present numerical results for a parabolic dividend barrier of the form
bt =

√
b2 + t/α and various claim amount distributions. Note that in this case, t∗ is the

solution of the equation

(c′ + u)eit∗ − c′ =

(
b2 +

t∗

α

)1/2

,

which needs to be calculated numerically, and the inhomogeneous term h(u, b) in (11)
can be calculated to

h(u, b) = e−λt∗

(
c+ iu

λ
− e−it∗ez2

2

√
π

(λ+ i)α
erfc(z)

)

with z =
√

(λ+ i)(αb2 + t∗).

4.1 General Remarks

Table 1 gives the choice of the parameter values and the densities of the claim size
distributions used in our calculations. The corresponding distribution parameters are
chosen such that the mean and variance of the distributions coincide and are equal to 1
and 0.5, respectively. Three of the four distributions are heavy-tailed.

The MC and QMC estimates are obtained using N = 66 000 paths for the recursive case
and for the simulation andN = 33 000 for the double-recursive and iterative calculations.
Since exact values are not available, we estimated them by a MC-simulation over 10
million paths for every choice of u and b.

For the recursive and double recursive calculations we use a recursion depth of k = 66,
which leads to a 132-dimensional sequence needed for the MC- and QMC-calculations,
while for the simulation it turned out to be sufficient to take a 400-dimensional sequence
so that 200 consecutive claims and interoccurrence times of a risk reserve sample path
can be simulated from one element of the sequence and correlations among the claim
sizes and claim occurrence times are avoided.
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Parameter Values
b height of dividend barrier at time t = 0 0..[0.1]..1
u initial capital 0..[0.1]..b
c premium density 1.5
λ intensity of claim number process 1
i constant interest force 0.1
α dividend barrier parameter 0.5
tmax stopping criterion for simulations 100
bmax absorbing upper barrier in Model B 4

Claim size distributions density

Gamma (2, 2) f(x) = 4x e−2x

Lognormal (−0.203, 0.637) f(x) = 1√
2π·0.637·x e

− (log x+0.203)2

2(0.637)2

Pareto (2.732, 0.634) f(x) = 0.786 1
x3.732

Weibull (1.44, 1.10) f(x) = 1.31
(

x
1.1

)0.44
e−( x

1.1)
1.44

Table 1: Parameter values and claim size distributions

For the iterative calculations we use a depth of imax = 66 and enlarge the grid to b = 7
so that the extrapolation from the array in 0 ≤ u ≤ b ≤ 1 is sufficiently accurate.

All our QMC-calculations are actually hybrid Monte Carlo estimates, i.e. the initial 50
dimensions are generated by a 50-dimensional QMC sequence and the remaining dimen-
sions are generated by a pseudo-random number generator. The use of hybrid Monte
Carlo sequences has proven to be a successful modification of the QMC-technique, since
for low discrepancy sequences typically the number of points needed to obtain a sat-
isfying degree of uniformness dramatically increases with the number of dimensions.
Moreover, due to the nature of our risk reserve process, the initial dimensions of the
sequence have a higher impact on the solution than higher dimensions.
Throughout this paper, we use ran2 as our pseudo-random number generator as de-
scribed in [22], which basically is an improved version of a Minimal Standard generator
based on a multiplicative congruential algorithm.

The different methods and sequences used are compared via the mean square error
(MSE)

S =

√
1

|P |
∑

(u,b)∈P

(
g(u, b)− g̃(u, b)

)2

,
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where g(u, b) and g̃(u, b) denote the exact and the approximated value, respectively, and
the set P is a grid in the triangular region (b = 0..[0.1]..1, u = 0..[0.1]..b). In addition,
for each method we give the maximal deviation of the approximated value from the

corresponding exact value ‖∆‖∞ = max(u,b)∈P

(
g(u, b)− g̃(u, b)

)
.

The simulations showed that the implementation of Faure and Niederreiter (0, s)-sequences
cannot compete with the performance of other low-discrepancy sequences for the inte-
grands of our problems. Therefore the simulation results of these two sequences have
not been included in the following considerations.

4.2 Error analysis

4.2.1 Survival probability

In Model A the survival probability can only be calculated using the simulation ap-
proach. Figure 2 shows the errors for the Weibull distribution and Table 2 gives the
mean-square and the maximal error of the simulation results for each of the sequences
and claim size distributions used (N = 66 000).

2.5 5 7.5 10 12.5 15
Log2HNL

-10

-8

-6

-4

-2

Log2HSL

Sobol

Niederr. Ht,sL
Halton

Monte Carlo

Figure 2: MSE of the simulation of φ(u, b) as a function of N (Model A, Weibull
distribution)

Here, only the Sobol sequence leads to an improvement compared to the Monte Carlo
simulation.

In Model B, the integral operator (14) can be used to calculate the survival probability,
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Figure 3: MSE of φ(u, b) estimates as a function of N (Pareto distribution, Model B),
fitted
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Figure 4: Fitted MSE of φ(u, b) estimates (Gamma distribution, Model B)

Monte Carlo Halton Niederr. (t,s) Sobol
Gamma S 0.001744 0.002247 0.002585 0.001111

‖∆‖∞ 0.004195 0.004773 0.004595 0.002393
Lognormal S 0.001648 0.001678 0.001813 0.001437

‖∆‖∞ 0.003738 0.004164 0.003402 0.002687
Pareto S 0.001888 0.002119 0.002043 0.002695

‖∆‖∞ 0.004477 0.004285 0.005239 0.00431
Weibull S 0.001632 0.002423 0.002656 0.001141

‖∆‖∞ 0.00463 0.004685 0.004179 0.002338

Table 2: Simulation errors for the survival probability in Model A
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Monte Carlo Halton Niederr. (t,s) Sobol

Gamma
Simulation S 0.00186705 0.000698195 0.00180109 0.000303748

‖∆‖∞ 0.004275 0.001265 0.003022 0.000612
Recursive S 0.00115668 0.000148828 0.000216361 0.000157103

‖∆‖∞ 0.003236 0.000331 0.000486 0.00036
Iterative S 0.010934 0.0107691 0.0108299 0.0108279

‖∆‖∞ 0.015 0.013732 0.013807 0.013803

Lognormal
Simulation S 0.0018042 0.000351439 0.00195453 0.000282303

‖∆‖∞ 0.004136 0.001045 0.003431 0.000923
Recursive S 0.00119801 0.000146449 0.000221486 0.000187532

‖∆‖∞ 0.0033 0.000332 0.000523 0.000424
Iterative S 0.0115233 0.0113429 0.01141 0.011408

‖∆‖∞ 0.015954 0.014688 0.014772 0.014767

Pareto
Simulation S 0.00187995 0.000494491 0.00159844 0.000652944

‖∆‖∞ 0.004005 0.001343 0.003035 0.001666
Recursive S 0.00144045 0.000177989 0.000210099 0.000208204

‖∆‖∞ 0.003893 0.000513 0.000539 0.00044
Iterative S 0.0131512 0.0129077 0.0129771 0.012975

‖∆‖∞ 0.018795 0.01741 0.017498 0.017498

Weibull
Simulation S 0.0017325 0.000530047 0.00132312 0.000342577

‖∆‖∞ 0.004521 0.001225 0.002562 0.000812
Recursive S 0.00114726 0.000155255 0.000215812 0.000147719

‖∆‖∞ 0.003259 0.000377 0.00047 0.00036
Iterative S 0.0106633 0.0105005 0.0105598 0.0105578

‖∆‖∞ 0.014519 0.013309 0.013382 0.013378

Table 3: Simulation errors for the survival probability in Model B
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and the errors of the different methods are given in Table 3.

To quantify the effect of using a low discrepancy sequence, we perform a regression
analysis by fitting

log2(S) = a0 + a1 log2(N) + a2 log2(log2(N)) + ε

to the data using a least square fit. Note that Koksma-Hlawka’s inequality (25) could
be interpreted as implying a1 = −1 and a2 = s, where s is the dimension of the sequence
used. However, since we use a hybrid sequence and since the effective dimension may
differ from the theoretical dimension, the values of a1 and a2 deviate from the ones above.
Figures 3 and 4 show these regression fits for the Pareto and Gamma distributions, the
Weibull and Lognormal distributions show a similar behaviour. In the sequel, all figures
will be given in terms of their regression fits.

4.2.2 Expected value of the dividend payments

The simulation results for the expected value of the dividends in Model A show a clear
advantage of QMC methods over MC integration. As an illustration, Figure 5 depicts
the MSE of the simulation results as a function of N for the Weibull distribution.

While for small N , the Sobol sequence outperforms the other sequences by a factor of
about 4 in terms of the MSE, for large N the Halton sequence used in the recursive
algorithm is to be preferred. To quantify this effect, we introduce the efficiency gain

gaini =
N∗

MC(S)

N∗
i (S)

where N∗
MC(S) is the number of paths needed in the Monte Carlo simulation to reach

a given error of S, and N∗
i (S) is the corresponding N using an alternative method.

Figure 6 shows that except for the (0, s)-nets (which are not plotted) all methods are an
improvement in efficiency compared to Monte Carlo simulation and the gain increases
at smaller errors.

The above comparisons are performed with respect to N , the number of summands in
the MC and QMC approximations. However, it might be preferable to compare the
accuracy of the various numerical solution techniques with respect to calculation time,
see Table 4 and Figure 7. It turns out that the performance of the double recursive
algorithm is still competitive when measured with respect to calculation time; however,
the recursive method using Sobol’s sequence seems preferable. One also has to notice
that the Niederreiter sequence in base 2 gives results worse than the Monte Carlo meth-
ods, which is due to the fact that in Model A, all 50 QMC dimensions of the elements
are relevant. However, the quality of the different sequences also depends on the claim
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Figure 5: MSE of expected dividend payments (Weibull distribution, Model A)
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Figure 6: Efficiency gain for calculation of expected dividends (Model A, Weibull dis-
tribution)
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distribution used, as a comparison with Figure 8 shows. Moreover, it is clearly visible
that although the simulation is the fastest method using N elements, it is actually the
worst when the error is considered.

Simulation Iterative Recursive Double Rec.
Monte Carlo 209.551 413.685 746.824 3062.61
Halton 186.033 407.416 802.648 3162.44
Niederr. (t,s) 250.527 388.903 732.736 3036.35
Sobol 186.813 174.247 947.162 2811.14
Faure 393.982 174.3 732.161 3028.67
(0,s) net 179.47 389.017 732.048 3028.34

Table 4: Calculation times in seconds (expected dividends, Lognormal distribution,
Model A)
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Figure 7: MSE of the expected dividend payments as a function of calculation time
(Lognormal distribution, Model A)

Figure 8 furthermore shows an attempt to compare the results of the iterative method
with the other methods. Here some care is needed, since the recursion depth k of the
recursive algorithms is fixed in advance (and thus also the error caused by choosing k)
and the number N of sequence elements is increased with time. On the other hand,
for the iterative method N is fixed in advance and the iteration depth is increased with
time.

The calculations show that for all iterative methods and the above choice of initial
values, it takes 40 to 50 iterations until the approximations are sufficiently close to the
exact values. Thus one might try to improve the efficiency of the algorithm by first
simulating the process (with a small number Ns of simulation paths) and then use these
simulation estimates as initial values for the iterative procedure. Naturally, this choice
of initial values for the grid has a much lower initial error than using h(uj, bk), but is
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Figure 8: Calculation times in seconds (expected dividend payments, Pareto distribu-
tion, Model A)
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Figure 9: Convergence of the dividend payments estimate for (u, b) = (0, 1) (itera-
tive method using h(u, b) and 10 simulation paths, resp., as initial values for the grid,
Lognormal Distribution, Model A)
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much less smooth than h which lowers the convergence rate of the algorithm. However,
Figure 9 shows that even for Ns = 10, this approach substantially improves the plain
iterative method.

In contrast to Model A, in Model B the effective dimension of the simulation as well as
the dimension of the iterated integral operator becomes very small. It turns out that
for the Weibull, Gamma and Lognormal distribution on average only about 8 claims or
iterations of the operator are needed until b becomes large enough so that practically
no dividends will be paid out any more, and for the Pareto distribution only 3 to 6
claims are needed. So while Model A is a high-dimensional problem (with 50 QMC
dimensions in our case), Model B is low-dimensional with an effective dimension of less
than 20 (every claim or recursive step needs two dimensions), and one can expect the
usual good properties for low-discrepancy sequences in low-dimensional environments.
Figure 10 shows the MSE as a function of N for the Gamma distribution. The behavior
is similar to Model A, except that now the (t, s) nets exhibit a good convergence which is
even better than Halton’s sequence (other distributions also show a similar behaviour).
Here again, Sobol’s sequence is by far the best for a low number N of points, but
loses quality for larger N (cf. Figure 11). Figure 12 depicts the MSE as a function of
calculation time.
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Figure 10: MSE of expected dividend payments (Gamma distribution, Model B)

As pointed out by Bratley, Fox and Niederreiter [7] and numerically investigated
by Radovic, Sobol’ and Tichy [23], the distribution behavior of the initial elements
of (t, s) nets is not satisfying due the so-called leading-zeros phenomenon. Thus, it
has been suggested to start the sequence at n = pk (called the “step”), with k being
at least the maximum degree of the polynomials used to generate the sequence and p
denoting the base of the construction. As Figure 13 shows, introducing the step indeed
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considerably improves the performance of (t, s)-sequences for moderate sizes of N .

The iterative method in Model B is very sensitive to the choice of the mesh-size of the
grid, so that one has to select a very small mesh-size to get good results. It turns out
that for a mesh-size of 0.5 and 0.2 for values of b > 1 up to b = 4 (when no dividends
will be paid out any more due to the absorbing barrier), the obtained values typically
still are about 0.02 and 0.003, respectively, greater than the exact value.

Tables 5 and 6 give a complete list of all the errors of the various methods for all
distributions in Model A and B, respectively.

4.3 Model Analysis

In this final section we want to use our simulation results to investigate the sensitivity
of the probability of survival and the expected dividend payments to the claim size
distribution and to the consideration of interest rates. For that purpose we fix a value
of b (the initial height of the dividend barrier) and plot φ(u, b) and W (u, b) against u.
Figures 14 and 15 depict φ(u, b) for the choice b = 1 in Model A and B, respectively.
They also include the corresponding plot for i = 0. Note that all the distributions are
normalized to have equal mean and variance. Since heavy tail distributions exhibit their
characteristic behavior for larger values of u, we also give a plot of φ(u, b) against u for
b = 30 in Model A (Figure 16).

A double logarithmic plot of the ruin probability (Figure 17) against u (for fixed b =
30) displays a similar behaviour of the heavy-tail distributions in our dividend barrier
model as it has been obtained by simulation of surplus processes without a barrier (see
e.g. Asmussen and Binswanger [6]). Note that the Pareto distribution implies a
qualitatively different behavior of φ(u, b) for large u. Related simulations have shown
that for larger values of the variance, this is also the case for Log-normal distributions
(cf. Heersink [19]).

Figures 18 and 19 show the dependence of the expected dividend payments on u for
fixed values of b = 1 and b = 30, respectively. Here it turns out that the consideration
of gaining interest on the free reserve has a large effect on the values of W (u, b), whereas
the choice of the claim size distribution is more or less negligible.

As an illustration Tables 7 to 10 give the exact values of φ(u, b) and W (u, b) for the
Gamma distribution in Model A and B, respectively (a complete list of all the exact
and simulated values is available from the authors).
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Figure 11: Efficiency gain for calculation of expected dividends (Model B, Gamma
distribution)
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Figure 12: MSE of expected dividend payments (Gamma distribution, Model B) as a
function of calculation time
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Figure 13: MSE of expected dividends, step=533 (Gamma distribution, Model B)
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Monte Carlo Halton Niederr. (t,s) Sobol

Gamma
Simulation S 0.0102387 0.00589075 0.00644128 0.0122924

‖∆‖∞ 0.02573 0.01542 0.01382 0.01653
Recursive S 0.00690747 0.00186699 0.00504432 0.00138267

‖∆‖∞ 0.02303 0.00331 0.00699 0.00274
Double Rec. S 0.00699453 0.00185775 0.00333911 0.00110242

‖∆‖∞ 0.01626 0.00362 0.00535 0.00249
Iterative S 0.016958 0.0153584 0.0160474 0.0160834

‖∆‖∞ 0.02798 0.02057 0.02143 0.02146

Lognormal
Simulation S 0.0104705 0.00609589 0.00585217 0.0139076

‖∆‖∞ 0.02215 0.01477 0.01377 0.01843
Recursive S 0.00719265 0.00164129 0.00622522 0.0016576

‖∆‖∞ 0.02355 0.00323 0.00863 0.00296
Double Rec. S 0.00708872 0.00148873 0.00484965 0.00100742

‖∆‖∞ 0.01592 0.00319 0.00739 0.00248
Iterative S 0.0170572 0.0154885 0.0162279 0.0162694

‖∆‖∞ 0.02873 0.02154 0.0225 0.02254

Pareto
Simulation S 0.0111856 0.0130283 0.0127553 0.0221408

‖∆‖∞ 0.0297 0.0237 0.02513 0.0275
Recursive S 0.00828872 0.00167252 0.00790734 0.00251632

‖∆‖∞ 0.02591 0.00407 0.0114 0.00455
Double Rec. S 0.00767502 0.00131978 0.00807013 0.00119566

‖∆‖∞ 0.01775 0.00371 0.0114 0.00322
Iterative S 0.0216169 0.0206179 0.0213459 0.0214136

‖∆‖∞ 0.03623 0.02909 0.03007 0.03013

Weibull
Simulation S 0.00985157 0.005163 0.00685562 0.012519

‖∆‖∞ 0.02465 0.01205 0.01505 0.01741
Recursive S 0.0068602 0.00201594 0.00457433 0.00133397

‖∆‖∞ 0.02297 0.00354 0.00627 0.00272
Double Rec. S 0.00699997 0.00211651 0.002768 0.00110075

‖∆‖∞ 0.01634 0.00384 0.00449 0.00236
Iterative S 0.016865 0.0152578 0.0159104 0.0159438

‖∆‖∞ 0.02783 0.02037 0.02119 0.02122

Table 5: Errors of the various methods for expected dividend payments in Model A
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Monte Carlo Halton Niederr. (t,s) Sobol

Gamma
Simulation S 0.00548782 0.00101735 0.000896726 0.00102161

‖∆‖∞ 0.01285 0.00238 0.00201 0.00246
Recursive S 0.00258046 0.000573281 0.00048327 0.000696459

‖∆‖∞ 0.00652 0.00171 0.00151 0.00201
Double Rec. S 0.00237654 0.00062463 0.000638122 0.000951905

‖∆‖∞ 0.00559 0.00185 0.00188 0.00239
Iterative S 0.0176776 0.018468 0.0183926 0.018383

‖∆‖∞ 0.02558 0.02328 0.02317 0.02316

Lognormal
Simulation S 0.00496058 0.000959204 0.00115588 0.000858514

‖∆‖∞ 0.01278 0.00206 0.00274 0.00289
Recursive S 0.00263774 0.000567729 0.000465821 0.000696362

‖∆‖∞ 0.00689 0.00182 0.00161 0.00215
Double Rec. S 0.00229559 0.000588638 0.000605718 0.000989495

‖∆‖∞ 0.00526 0.00193 0.00197 0.00256
Iterative S 0.0216594 0.0225257 0.0224476 0.0224349

‖∆‖∞ 0.03055 0.02876 0.02864 0.02864

Pareto
Simulation S 0.005052 0.000733847 0.00111069 0.000917839

‖∆‖∞ 0.01517 0.00156 0.00292 0.00219
Recursive S 0.0028135 0.000453588 0.000424179 0.000635163

‖∆‖∞ 0.00802 0.00166 0.00156 0.00204
Double Rec. S 0.00197331 0.000496007 0.000579632 0.000935201

‖∆‖∞ 0.003926 0.00178 0.00203 0.00245
Iterative S 0.0301029 0.0310616 0.031024 0.0310033

‖∆‖∞ 0.04231 0.04179 0.04173 0.04171

Weibull
Simulation S 0.00533089 0.000849476 0.000803501 0.000875673

‖∆‖∞ 0.0136 0.00242 0.00216 0.00203
Recursive S 0.00257658 0.000570681 0.000486129 0.000688766

‖∆‖∞ 0.00652 0.00178 0.00158 0.00207
Double Rec. S 0.00241979 0.000619308 0.000643352 0.000921779

‖∆‖∞ 0.00572 0.00191 0.00196 0.00243
Iterative S 0.016305 0.0170657 0.0169917 0.016983

‖∆‖∞ 0.02382 0.02149 0.02138 0.02138

Table 6: Errors of the various methods for expected dividend payments in Model B
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Figure 14: Survival probability φ(u, 1) in Model A
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Figure 15: Survival probability φ(u, 1) in Model B
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Figure 16: Survival probability φ(u, 30) in Model A
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Figure 17: Log-log plot of the ruin probability ψ(u, 30) against u (Model A)
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Figure 18: Expected dividend payments W (u, 1) in Model A
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Figure 19: Expected dividend payments W (u, 30) in Model A
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b\x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0 0.18
0.1 0.18 0.188
0.2 0.181 0.189 0.197
0.3 0.182 0.191 0.199 0.206
0.4 0.184 0.193 0.201 0.209 0.214
0.5 0.187 0.196 0.204 0.212 0.219 0.223
0.6 0.189 0.199 0.208 0.217 0.224 0.23 0.233
0.7 0.193 0.202 0.212 0.221 0.229 0.235 0.241 0.243
0.8 0.196 0.206 0.216 0.226 0.235 0.242 0.248 0.252 0.254
0.9 0.2 0.21 0.221 0.231 0.24 0.249 0.256 0.261 0.265 0.266
1. 0.203 0.215 0.226 0.236 0.246 0.255 0.263 0.27 0.275 0.278 0.279

Table 7: Exact values for the survival probability of the Gamma distribution, Model A

b\x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0 1.78
0.1 1.782 1.904
0.2 1.783 1.906 2.036
0.3 1.785 1.911 2.04 2.17
0.4 1.789 1.915 2.048 2.177 2.303
0.5 1.794 1.922 2.053 2.188 2.315 2.436
0.6 1.799 1.927 2.062 2.196 2.327 2.456 2.572
0.7 1.805 1.935 2.069 2.205 2.339 2.468 2.594 2.709
0.8 1.811 1.942 2.076 2.215 2.352 2.485 2.614 2.736 2.85
0.9 1.816 1.948 2.084 2.224 2.362 2.498 2.632 2.757 2.88 2.99
1. 1.818 1.954 2.093 2.231 2.372 2.51 2.646 2.776 2.903 3.02 3.131

Table 8: Exact values for the dividends of the Gamma distribution, Model A
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b\x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0 0.245
0.1 0.245 0.256
0.2 0.246 0.257 0.267
0.3 0.248 0.259 0.27 0.279
0.4 0.251 0.262 0.274 0.283 0.291
0.5 0.254 0.266 0.278 0.289 0.297 0.303
0.6 0.258 0.27 0.283 0.294 0.304 0.312 0.316
0.7 0.262 0.275 0.288 0.3 0.311 0.32 0.327 0.33
0.8 0.266 0.28 0.294 0.307 0.319 0.329 0.337 0.343 0.346
0.9 0.271 0.286 0.3 0.314 0.327 0.338 0.348 0.355 0.36 0.362
1. 0.276 0.291 0.306 0.321 0.334 0.347 0.357 0.366 0.373 0.378 0.38

Table 9: Exact values for the survival probability of the Gamma distribution, Model B

b\x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0 1.096
0.1 1.096 1.189
0.2 1.092 1.186 1.286
0.3 1.088 1.182 1.281 1.384
0.4 1.082 1.176 1.276 1.377 1.481
0.5 1.075 1.168 1.266 1.369 1.472 1.577
0.6 1.064 1.157 1.256 1.357 1.461 1.566 1.671
0.7 1.053 1.146 1.243 1.343 1.447 1.551 1.655 1.762
0.8 1.039 1.132 1.228 1.327 1.43 1.535 1.64 1.745 1.85
0.9 1.024 1.115 1.21 1.309 1.411 1.514 1.619 1.724 1.829 1.935
1. 1.006 1.095 1.19 1.289 1.388 1.49 1.594 1.699 1.804 1.909 2.014

Table 10: Exact values for the dividends of the Gamma distribution, Model B
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