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Summary. In this article, we will first highlight a method proposed by Hlawka and
Mück to generate low-discrepancy sequences with an arbitrary distribution H, and
discuss its shortcomings. As an alternative, we propose an interpolated inversion
method that is also shown to generate H-distributed low-discrepancy sequences, in
an effort of order O(N log N).

Finally, we will address the issue of integrating functions with a singularity on
the boundaries. Sobol and Owen proved convergence theorems and orders for the
uniform distribution, which we will extend to general distributions. Convergence
orders will be proved under certain origin- or corner-avoidance conditions, as well
as growth conditions on the integrand and the density. Our results prove that also
non-uniform quasi-Monte Carlo methods can be well applied to integrands with a
polynomial singularity at the integration boundaries.

1 Introduction

The numerical solution of several problems arising in financial mathematics
require the use of non-uniformly distributed point sequences. In many cases,
(pseudo-) random sequences for a given density are generated by some kind
of transformation, possibly involving two or more independent random vari-
ables. As quasi-Monte Carlo sequence follow a given construction scheme,
subsequent elements of the sequence do not satisfy the requirement of inde-
pendence. A good overview over several other ways to generate non-uniformly
distributed (pseudo-) random sequences can be found in the Devroye’s mono-
graph [2]. Unfortunately, almost none of them can be applied to QMC.

In 1972, Hlawka and Mück [8] proposed a method to generate H-distributed
sequences with low discrepancy by using the (quasi)-empirical distribution
function instead. Later, they also extended the method to multi-dimensional
sequences [9].
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The case of dependent random variates is more involved, and hardly any-
thing about this case is known for quasi-Monte Carlo methods. For special
distributions with given marginals and covariance matrix generation methods
are known, like the NORTA and QUARTA methods [6]. Again, in this case,
the inverse of the marginals needs to be known to apply the transformation,
so this method is also not applicable in most cases.

In this article, we will first investigate the Hlawka-Mück method and high-
light its shortcomings. We will then propose some adaptions to make the
generated sequences more suitable in many practical cases and investigate
sequences generated by an approximated inversion of the cumulative distri-
bution function.

In the second part we will point our view to the non-uniform integration
of singular integrands. QMC integration of functions with a singularity at
the integration boundaries were already investigated by Sobol’ [17], and later
as non-uniform integration problems by Hartinger, Kainhofer, and Tichy [5].
Both publications give criteria for convergence of the singular integral, but
do not explicitly prove error orders. Owen [15] proved these for uniform inte-
gration using certain growth conditions on the function near the singularity.
In this paper we will expand Owen’s results to integration with respect to
arbitrary densities.

2 Basic Definitions

Remark 1. Although all results in the article will be formulated on the unit
cube Us = [0, 1]

s
, they are valid on any compact subinterval [a,b] ⊂ R

s by a
simple affine transformation of the sequence and all corresponding entities.

2.1 Discrepancy and Koksma-Hlawka Inequality

When dealing with quasi-Monte Carlo sequences, the most common measure
of their distribution properties is the discrepancy. For uniformly distributed
sequences on U s it measures the maximum error one can obtain on intervals
parallel to the axes:

Definition 1 (uniform discrepancy). The discrepancy DN (ω) of a se-
quence ω = (x1,x2, . . .) is defined as

DN (ω) = sup
J⊆Us

∣

∣

∣

∣

1

N
AN (J, ω) − λ(J)

∣

∣

∣

∣

,

where AN counts the number of elements of (x1, . . . ,xN ) falling into the in-

terval J , i.e. AN (J, ω) =
∑N

n=1 χJ (xn), and λ denotes the Borel-measure of
the interval J .
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The best sequences known to date (e.g. Halton, Sobol, Faure sequences, and
(t, s)-nets) have a discrepancy order of O (logs N/N), which is also conjectured
to be optimal.

The notion of discrepancy is especially important in view of the famous
Koksma-Hlawka inequality, which allows to bound the quasi-Monte Carlo in-
tegration error by the variation of f multiplied by the discrepancy of the
sequence ω. A good discussion of variation can be found in [16], and a de-
tailled overview on discrepancy and low-discrepancy sequences is given in the
monographs by Niederreiter [14] and Drmota and Tichy [3].

A similar concept of discrepancy can be defined for non-uniformly dis-
tributed sequences, i.e. sequences with density h or distribution function H :

Definition 2 (non-uniform discrepancy). The H-discrepancy of the se-
quence ω̃ = (y1,y2, . . .) measures its distribution properties with respect to
the measure H on U s. It is defined as

DN,H(ω̃) = sup
J⊆Us

∣

∣

∣

∣

1

N
AN (J, ω̃) − H(J)

∣

∣

∣

∣

.

Theorem 1 (non-uniform Koksma-Hlawka Inequality, [1]). Let f be a
function of bounded variation on U s, H a probability distribution with contin-
uous density on U s and ω̃ = (y1,y2, . . .) a sequence on U s. Then the QMC
integration error can be bounded by

∣

∣

∣

∣

∣

∫

Us

f(x)dH(x) − 1

N

N
∑

n=1

f(yn)

∣

∣

∣

∣

∣

≤ V (f)DN,H(ω̃). (1)

2.2 Existing Methods for the Generation of Non-Uniform
Sequences, and Their Problems

The Koksma-Hlawka inequality gives a convergence criterion for QMC inte-
gration, and shows that asymptotically QMC methods have to be preferred
over Monte Carlo methods, due to their error order of O (logs N/N) compared
to 1/

√
N for Monte Carlo integration.

For generating non-uniformly distributed low-discrepancy sequences, most
desirable would be the direct transformation of uniformly distributed se-
quences to H-distributed sequences using the inverse of the distribution func-
tion H−1 (the conditional distribution functions or the marginal distributions
for multi-dimensional sequences). Such a transformation preserves the dis-
crepancy in one dimension, i.e.

DN (ω) = DN,H(H−1(ω)) ,

and is independent of the value of N , so that it can be used to generate an
arbitrary number of points. In most cases, however, the distribution func-
tion is not explicitly available, so this method is no easily applicable. In the
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multi-dimensional case with dependencies between the dimensions, even the
discrepancy is not preserved, as intervals are not transformed to intervals.

The most common practice for pseudo-random variates, the acceptance-
rejection method, also fails for quasi-Monte Carlo sequences. The main reason
is that the rejection effectively introduces discontinuities into the integrand,
which leads to bad results of QMC methods, as several numerical investiga-
tions show (e.g. [12, 18]). Even the Koksma-Hlawka inequality fails to provide
error bounds due to the unbounded variation of such functions. An additional
problem is the high number of discarded points, so the cost of generating a
sequence of N points is at least one order of magnitude higher.

To tackle the problem of integration with other densities, Wang proposed
a smoothed rejection sampling method [18] by adapting the integrand. Thus,
while his method avoids the jumps in the integrand, it cannot be used to
directly generate H-distributed sequences. The same shortcoming appears
with the approach of stratified sampling, where the integration domain is
split into various areas, and in each area ni uniformly distributed points are
generated. While this methods works well for integration, the sequences used
therein do not display very good distribution properties.

3 The Hlawka-Mück Method

The idea behind the Hlawka-Mück transformation [8, 9] is to use an approxi-
mation of the distribution function in the inversion method. Instead of directly
taking this value, they again use the original sequence to count the relative
number of elements below that value and use this number as the new point.
This way, the quasi-Monte Carlo error will not only involve the discrepancy of
the original sequence, but also the quality of the approximation. They prove a
bound on the discrepancy of DN,H(ω̃) ≤ (1 + 4M)sDN (ω), where M denotes
the supremum of the density.

In 1996, Hlawka [7] gave a modification of the Hlawka-Mück method using
the one-dimensional marginal distributions instead of the conditional distri-
butions for the transformation.

Definition 3. Let h(x) be a density function on [0, 1]s. For a point x =
(

x(1), . . . , x(s)
)

∈ [0, 1]s we define the marginal distribution functions as

H1(x
(1)) =

∫ x(1)

0

∫ 1

0

· · ·
∫ 1

0

h(u)du

H2(x
(2)) =

∫ 1

0

∫ x(2)

0

· · ·
∫ 1

0

h(u)du

...

Hs(x
(s)) =

∫ 1

0

∫ 1

0

· · ·
∫ x(s)

0

h(u)du .
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As each of the functions Hi is invertible, Hlawka defines a transformation
and bounds the discrepancy of the transformed sequence as follows:

Lemma 1 (Hlawka [7]). Let H(x) denote a cumulative distribution func-
tion with density h(x) = h1(x

(1))h2(x
(2)) · · ·hs(x

(s)) defined on U s and
Mh = sup h(x). Let furthermore ω = (x1,x2, . . . ,xN ) be a sequence in U s

with discrepancy DN (ω). Then the point set ω̃ = (y1, . . . ,yN ) with

y
(j)
k =

1

N

N
∑

r=1

⌊

1 + x
(j)
k − Hj

(

x(j)
r

)⌋

=
1

N

N
∑

r=1

χ
[0,x

(j)
k

]

(

Hj

(

x(j)
r

))

(2)

has an H-discrepancy of

DN,H(ω̃) ≤ 2(1 + 3Mh)sDN (ω) .

The advantage of this approach is that the approximation quality of the
distribution function increases with the number of sampled points N , so that
the resulting H-distributed sequence is again a low-discrepancy sequence ω̃,
at least for independent marginals. For dependent marginals, in particular if
the distribution function does not factor, the discrepancy can only be proved
to satisfy the inequality DN,H(ω̃) ≤ c(DN (ω))1/s.

Observe, however, that in these integration problems at least in principle
one can always avoid dependent sequences by hiding the dependence in the
integrand through an incorporation of an appropriate copula (see [13] for an
introduction into copulas).

Applying the Hlawka-Mück method to singular integrands, we found [4, 5]
that these low-discrepancy sequences also work well with singular integrands,

but only with an additional shift of all components with y
(j)
k < 1/N to a

value of 1/N . By this shift the order of the discrepancy is preserved, and the
resulting sequence is a low-discrepancy sequence with density h.

However, the Hlawka-Mück method also has several disadvantages:

1. The resulting sequence is generated only on a grid with spacing 1
N . While

the resulting sequence displays the required distribution properties, for
several applications finer-grained sequences are of desire.

2. Several points might have identical coordinates, in particular for highly
peaked distributions. Consequently, the minimum distance principle, which
is desired in several applications in computer graphics (see e.g. [11]), is no
longer fulfilled.

3. The construction of each point involves a sum over all other points, so the
cost is O(N2), and the (numerically expensive) distribution function has
to be evaluated sN times.

4. One has to fix the number N beforehand, and the resulting set will heav-
ily depend on it. This also means that when adding some points to the
sequence, all other elements have to be regenerated.

In the sequel we will present several ways to solve or at least considerably
improve these problems for most practical uses.
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4 Interpolation

For some applications the Hlawka-Mück methods have the drawback that all
points of a set with cardinality N lie on the lattice {x ∈ U s

∣

∣x(l) = i/N for 0 ≤
i ≤ N, 1 ≤ l ≤ s}. Rather than using the non-continuous quasi-empirical dis-
tribution, we therefore propose to use a smoothed approximation, where the
values between the jumps are interpolated in the empirical distribution func-
tion. The idea is to avoid the lattice structure and improve the approximation
of the inverse distribution function.

Theorem 2. Let ωN = (x1, . . . ,xN ) be a sequence in U s with discrepancy
DN (ωN ), and H(x) a distribution function with bounded, continuous den-
sity h(x) =

∏s
i=1 hi(x

(i)) and hi(x
(i)) ≤ M < ∞ for all i. Furthermore, let

Hi(x) =
∫ x

0 hi(u)du and define for k = 1, . . . , N and l = 1, . . . , s the values

x
(l)−
k = max

A=
n

xi∈ ωN

∣

∣ Hl(x
(l)
i

)≤x
(l)
k

o

x
(l)
i , and x

(l)−
k = 0 for A = ∅,

x
(l)+
k = min

B=
n

xi∈ ωN

∣

∣ Hl(x
(l)
i

)≥x
(l)
k

o

x
(l)
i , and x

(l)+
k = 1 for B = ∅.

Then the discrepancy of the set ω̄N = (yk)1≤k≤N generated by

y
(l)
k =

Hl

(

x
(l)+
k

)

− x
(l)
k

Hl

(

x
(l)+
k

)

− Hl

(

x
(l)−
k

) x
(l)−
k +

x
(l)
k − Hl

(

x
(l)−
k

)

Hl

(

x
(l)+
k

)

− Hl

(

x
(l)−
k

) x
(l)+
k (3)

can be bounded by
DN,H(ω̄) ≤ (1 + 2M)sDN (ω).

For the proof, we need to recall a lemma from the original paper of Hlawka
and Mück [9]:

Lemma 2. Let ω1 = (u1, . . . ,uN ) and ω2 = (v1, . . . ,vN ) be two sequences in
Us. If for all 1 ≤ j ≤ s and all 1 ≤ i ≤ N the condition

|u(j)
i − v

(j)
i | ≤ εj

holds for some values εj , we get the following bound on the difference of the
discrepancies

|DN(ω1) − DN (ω2)| ≤
s

∏

j=1

(1 + 2εj) − 1. (4)

Proof (Proof of Theorem 2). We first start with the one-dimensional case.
The set ω̄N = {y1, . . . , yN} is H-distributed, so that the set H(ω̄N ) =

{H(y1), . . . , H(yN )} is uniformly distributed and their respective discrepan-
cies are equal.
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We want to apply Lemma 2 with ω1 = ωN and ω2 = H(ω̄N ), so for
1 ≤ k ≤ N we obtain

|H(yk) − xk | =
∣

∣H(yk) − H(H−1(xk))
∣

∣ =
∣

∣

∣

∣

∣

∫ yk

H−1(xk)

h(t)dt

∣

∣

∣

∣

∣

≤ M
∣

∣yk − H−1(xk)
∣

∣ ≤ MDN(ωN ). (5)

The last inequality can be proved as follows: By the definition of x−
k and

x+
k we have H(x−

k ) ≤ xk ≤ H(x+
k ), and by the monotonicity of H (assuming

it is continuous, otherwise similar arguments can be used) we get

x−
k ≤ H−1(xk) ≤ x+

k .

Furthermore, yk as constructed in (3) is just a linear interpolation between
x−

k and x+
k , so we have the same bounds: x−

k ≤ yk ≤ x+
k .

Subtracting these two, we get the estimate

∣

∣H−1(xk) − yk

∣

∣ ≤
∣

∣x+
k − x−

k

∣

∣ ≤ max
1≤j≤N

min
i6=j

|xi − xj | ≤ DN (ωN ),

where the last inequality can easily be seen via the definition of the discrep-
ancy, or via the notion of dispersion (see e.g. [3]).

Applying Lemma 2 with ε = MDN (ωN ) finally gives:

|DN (ωN ) − DN,H(ω̄N )| ≤ 2MDN(ωN )

and thus DN,H(ω̄N ) ≤ (1 + 2M)DN(ωN ).

For the multi-dimensional version we can bound the one-dimensional pro-
jections like in the one-dimensional case (5), so again applying Lemma 2 we
get

DN,H(ω̄N ) ≤ DN (ωN ) + (1 + 2MDN(ωN ))s − 1

Expanding the binomial term and using (DN)
k ≤ DN , since DN ≤ 1, we

finally get the desired result DN,H(ω̄N ) ≤ (1 + 2M)
s
DN(ωN ) . ut

Remark 2. From the proof, it can readily be seen that this bound holds for
every construction that leads to

y
(l)
k ∈

[

x
(l)−
k , x

(l)+
k

]

.

Thus the kind of interpolation is not relevant for the discrepancy bound,
as the smoothness of the interpolation is not taken into account. Using some
additional restrictions on the interpolation, one might find even better bounds.

In order to integrate functions with singularities at the boundary it will be
convenient to shift the interpolated sequence in an appropriate way to avoid
regions that lie too close to the singularity.



8 Jürgen Hartinger and Reinhold Kainhofer

Corollary 1. Let (ω̄N ) = {y1, . . . , yn} be constructed as in Theorem 2. Then
the sequence ω̂N = {ŷ1, . . . , ŷn} defined by

ŷ
(l)
k =











x
(l)+
k if A = ∅,

x
(l)−
k if B = ∅,

y
(l)
k otherwise,

has an H-discrepancy of order

DN,H(ω̂) ≤ (1 + 2M)sDN(ω)

and the same distance

min
k=1,...,N

min
1≤j≤s

min(ŷ
(j)
k , 1 − ŷ

(j)
k )

to the boundaries as the original sequence ω.

In the construction one might question why one does not use the point set
{

k
N

}

0≤k≤N
to approximate the distribution function. However, in that case,

adding one single point to the set would then also change the whole set of
support points. As a result, the distribution function for all support points
would have to be reevaluated, which in practice is the numerically expensive
part of the calculation. If one uses the points of the original low-discrepancy
sequence, the distribution function only has to be evaluated at the new point,
although all yk will still have to be readjusted.

4.1 Using Different Sequences for Approximation and Inversion

In the previous section we investigated a transformation, where the distribu-
tion function in each dimension was approximated using the corresponding
low-discrepancy sequence for that dimension. Thus the distribution function
has to be evaluated sN times. As this evaluation is the numerically expensive
part of the generation for moderate values of N it is of advantage for practical
applications to lower the number of evaluations.

The idea now is to use the same one-dimensional low-discrepancy sequence
ω̂ = (zi)0≤i≤N for all dimensions to approximate the distribution function. If
two or more dimensions share the same marginal distribution, the cumulative
distribution function has to be evaluated only N times instead of a multiple
of N . Again, the resulting sequence displays the low-discrepancy property:

Theorem 3. Let ω̂ = (zi)1≤i≤N be a one-dimensional sequence with discrep-
ancy DN (ω̂), and ω = (xi)1≤i≤N an s-dimensional sequence with discrepancy
DN (ω). Let furthermore H(x) like in Theorem 2, and similarly define

z
(l)−
k = max

A=
n

zi∈ ω̂
∣

∣ Hl(zi)≤x
(l)
k

o

zi and z
(l)+
k = min

B=
n

zi∈ ω̂
∣

∣ Hl(zi)≥x
(l)
k

o

zi.
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Fig. 1. Hlawka-Mück and our interpolation construction

Again, we set z
(l)−
k = 0 if A = ∅ and z

(l)+
k = 1 if B = ∅.

Then the H-discrepancy of any transformed sequence ω̄ = (yk)1≤k≤N with

the property y
(l)
k ∈

[

z
(l)−
k , z

(l)+
k

]

for all 0 ≤ k ≤ N and 0 ≤ l ≤ s can be

bounded by
DN,H(ω̄) ≤ DN (ω̂) + DN (ω)(1 + 2M)s .

Proof. Similar to the proof of Theorem 2 we obtain in one dimension

∣

∣yk − H−1(xk)
∣

∣ ≤
∣

∣z+
k − z−k

∣

∣ ≤ DN (ω̂N ) ,

and from this |H(yk) − xk | ≤ MDN (ω̂N ). As a result, we have DN,H (ω̄N ) =
DN (H(ω̄N )) ≤ 2MDN (ω̂N) + DN (ωN ).

Applying the same steps to the one-dimensional projections, and using the
same relations as in the previous theorem, we get the bound

DN,H (ω̄N ) ≤ DN (ωN ) + DN (ω̂N) (1 + 2M)
s

for the multi-dimensional case. ut

To get a better understanding of the differences in the Hlawka-Mück
method and our interpolation method, both are depicted in figure 1.

In many applications, like the evaluation of Asian options with a given
distribution of the stock prices (see e.g. [4]), all dimensions share the same
one-dimensional distribution, and thus the distribution function can be fac-
tored into a product of s identical factors: H(x) =

∏s
i=1 H(1)(x(i)), where

H(1)(x) denotes the one-dimensional distribution function. In that case, the
distribution function has to be evaluated only N times, instead of sN time as
in other methods.
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Since the sequence to approximate the distribution function and the se-
quence used for inversion are now decoupled, we can lower the generation
effort even more by pre-sorting the support points

(

H(1)(zk)
)

1≤k≤N
:

Lemma 3. Let H(x) =
∏s

i=1 H(1)(x(i)). The numerical cost of generating an
N -element, H-distributed low-discrepancy sequence as defined in Theorem 3
has a numerical cost of O(N log N).

Proof. The generation of the H-distributed sequence consists of several steps:

(1) Generation of the uniformly distributed sequence (ω̂N),
(2) Generation of the uniformly distributed sequence (ωN),
(3) Calculation of the distribution function ĤN = H(1)(ω̂N ),
(4) Pre-sorting the support points ĤN ,
(5) For each 1 ≤ n ≤ N

a) finding the corresponding values z−k and z+
k , and

b) calculating the resulting point yk.

Clearly, (1), (2), and (3) are of order O(N). Sorting an N -element set of
numerical values is of order O(N log N) using Merge Sort or Heap Sort (see

[10]). Finally, for each of the N elements, finding the values of z
(l)−
k and z

(l)+
k

is of order O(log N) since the ĤN are already sorted. The actual calculation

of y
(l)
k from the z

(l)±
k is of constant order for each of the N elements. Thus

we obtain an asymptotic order of

3O(N) + O(N log N) + O(N log N) + O(N) = O(N log N). ut

Remark 3. If one does not use an N -element sequence as ω̂N , but an Ñ =
pdlogp Ne-element sequence, one can always add new points to the sequence in
linear effort, until the number of elements gets larger then Ñ . Only for these
logarithmically many points all N points created so far need to be readjusted.
For all other cases, however, the already existing points do not need to be
touched. This is of advantage and will also lower the total simulation effort if
one does not know the exact number of required points a priori.

4.2 Comparing the Actual Discrepancy

As a quick check of our theoretical results, we compared the discrepancy of the
sequences generated by the Hlawka-Mück and by our interpolated transfor-
mation method with the discrepancy of the original sequence. Unfortunately,
the L∞- (or extreme) discrepancy DN(ω̄N ) cannot be calculated explicitly
in dimensions higher than 2, so we will compared the L2-discrepancy, which
describes the mean error instead of the maximum error over all subintervals of
[0, 1)

s
containing the origin. As one can already expect from the discrepancy

bounds proved above, for both transforms we do not see any effect in the
L2-discrepancy compared to the untransformed sequences.
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5 Non-Uniform Integration of Singular Functions

Using the results from the previous sections, one can bound the QMC inte-
gration error for functions of finite variation. However, for functions with a
singularity - which appear for example in many problems from finance - these
bounds are infinite.

Sobol’ [17] proved a convergence theorem for singular integration us-
ing uniformly distributed low-discrepancy sequences, Owen [15] proved the
corresponding error orders under some growth conditions on the function.
Hartinger, Kainhofer, and Tichy [5] proved a similar convergence theorem
for non-uniformly distributed sequences, albeit using an L-shaped region for
cutting off the integral. Sobol and Owen, in contrast, mainly looked at hy-
perbolic regions, which require more sophisticated proof techniques, but can
give better error orders in general. Both their proofs make use of the so-called
low-variation extension of a function (see [16], although the idea is due to
Sobol’). In the following we will use Owen’s notations, where (a : b) denotes
the set of integers a through b, while for u ⊂ (1 : s) and x,y ∈ U s we denote
by xu : y−u the point where the coordinates u are taken from x, while the
coordinates (1 : s) \u are taken from y. Also, we will use two special types of
regions that exclude a certain volume around the origin or all corners:

Korig
min (ε) =

{

x ∈ Us
∣

∣

∣
min

1≤j≤s
x(j) > ε

}

(6)

Korig
prod(ε) =

{

x ∈ Us
∣

∣

∣

s
∏

j=1

x(j) > ε
}

(7)

Kcorner
min (ε) =

{

x ∈ Us
∣

∣

∣
min

1≤j≤s
min(x(j), 1 − x(j)) > ε

}

(8)

Kcorner
min (ε) =

{

x ∈ Us
∣

∣

∣

s
∏

j=1

min(x(j), 1 − x(j)) > ε
}

(9)

Korig
min avoids the origin and the lower boundaries via an L-shaped region, while

Korig
prod avoids it via a hyperbolic region. Kcorner

min and Kcorner
prod have similar

avoidance patterns, but for all corners at the same time.

Definition 4 (low-variation extension). Let f : U s 7→ R be an s-times
differentiable function (possibly unbounded at the definition boundaries, but
bounded inside). Furthermore, let K ⊆ U s a region with anchor c ∈ U s. That
is, for each x ∈ K we have [x, c] ⊆ K. Then the low-variation extension f̃ of
f from K to U s is defined by

f̃(x) = f(c)+
∑

∅6=u⊆(1:s)

(−1)|u|
∫

[x(u),c(u)]

�

z(u):c(−u)∈K∂uf
(

z(u) : c(−u)
)

dz(u) .

(10)
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Owen [16] showed that its Vitali and Hardy-Krause variation are bounded by

VUs(f̃) ≤
∫

K

∣

∣

∣
∂(1:d)f(x)

∣

∣

∣
dx (11)

VHK(f̃) ≤
∑

u6=∅

∫

Ku(1(−u))

∣

∣

∣
∂uf

(

x(u) : 1(−u)
)∣

∣

∣
dx(u) , (12)

using the definition Ku(b(−u)) =
{

x(u) ∈ U |u||x(u) : b(−u) ∈ K
}

.
We will in the sequel only consider singular functions that fulfill one of the

growth conditions for some Aj > 0, B < ∞, and all u ⊆ (1 : s):

|∂uf(x)| ≤ B

s
∏

j=1

(

x(j)
)−Aj− � j∈u

, or (13)

|∂uf(x)| ≤ B

s
∏

j=1

min
(

x(j), 1− x(j)
)−Aj− � j∈u

. (14)

5.1 L-shaped Regions

As a first case we will consider sequences that lie in Korig
min (ε), and thus avoid

the origin in an L-shaped region. This property can easily be seen for the
Halton and general (0, s) sequences, and also for non-uniform low-discrepancy
sequences that are generated by the Hlawka-Mück transformation (with shift,
as shown in [5]). This case was already investigated by the authors in [5],
but no explicit error bounds were given. In [4] it was applied to the special
example of pricing an Asian option, and error bounds were given for that
specific problem.

The error bounds given by Owen [16] for the uniform distribution are easily
generalized.

Theorem 4. Let f : U s 7→ R, and ωN = {x1, . . . ,xN} be a sequence with
xj ∈ Korig

min (εN ) for 1 ≤ j ≤ N . Let furthermore H(x) be a distribution on U s

with density h(x) and Mε = sup
x∈Us\Korig

min
(ε) h(x) ≤ ∞. If f fulfills growth

condition (13), and 0 < εN = CN−r < 1, then
∣

∣

∣

∣

∣

∫

Us

f(x)dH(x) − 1

N

N
∑

n=1

f (xn)

∣

∣

∣

∣

∣

≤ C1DN,HNr
P

s
j=1 Aj + C2N

r(maxAj−1)MεN

(15)
with some explicitly computable, finite constants C1, and C2.

Also, if xj ∈ Kcorner
min (εN ) for all j with 0 < εN = CN−r < 1/2, and f is

a real-valued function on (0, 1)s that fulfills growth condition (14), then (15)
holds. Mε has to be taken as the supremum over U s \Kcorner

min (ε) in that case.

The proof is obtained by replacing the Koksma-Hlawka bound in [15, Proof
of Theorem 5.2] by Chelson’s non-uniform bound (1) and factoring out the
supremum of the density Mε when necessary.
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Proof. Using a 3 ε-argument, we have

∣

∣

∣

∣

∣

∫

Us

f(x)dH(x) − 1

N

N
∑

n=1

f (xn)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Us

(

f(x) − f̃(x)
)

dH(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Us

f̃(x)dH(x) − 1

N

N
∑

n=1

f̃ (xn)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

N

N
∑

n=1

f̃ (xn) − 1

N

N
∑

n=1

f (xn)

∣

∣

∣

∣

∣

(16)

The last term vanishes, since f(x) = f̃(x) on K.
The second term can be bounded by VHK(f̃)DN,H(ω) using the non-

uniform Koksma-Hlawka inequality (1), and using Owen’s inequality (12) for

VHK(f̃) even further by C1N
r

Ps
j=1 Aj DN,H(ω) with C1 = B

∏s
j=1 C−Aj A−1

j .
Finally, for the first term we use Lemma 5.1 of [16]: If K ⊆ U s with anchor

c = 1, and f fulfills growth condition (13), then for all x ∈ UK = Us −K we

have
∣

∣

∣
f(x) − f̃(x)

∣

∣

∣
≤ B̃

∏s
j=1

(

x(j)
)−Aj

with B̃ = B
∏s

j=1

(

1 + 1
Aj

)

.

Thus, the first term can be bounded by

∣

∣

∣

∣

∫

Us

(

f(x) − f̃(x)
)

dH(x)

∣

∣

∣

∣

≤
∫

UK

∣

∣

∣
f(x) − f̃(x)

∣

∣

∣
h(x)dx ≤

MεN
B̃

∫

UK

s
∏

j=1

(

x(j)
)−Aj

dx ≤ MεN
B̃

s
∏

j=1

(

1

1 − Aj

)

s C1−min AkNr(max Ak−1).

The last inequality follows from direct integration, similar to [15, Proof of

Theorem 5.2]. Thus we have C2 = B̃
(

∏s
j=1

1
1−Aj

)

sC1−min Aj .

For the corner-case, we note that the unit cube can be partitioned into
2s cubes with anchor 1

2
=

(

1
2 , . . . , 1

2

)

, and each of them can be bounded like
above. Furthermore, the variation on each of them sums up to the variation
on the whole unit interval, thus we get the same bound with an additional
factor 2s in the constants. ut
Remark 4. Suppose that one uses some classical low discrepancy construc-
tion (e.g. Sobol, Faure, or Halton sequences) in combination with (shifted)
Hlawka-Mück or the (shifted) interpolation method. Then r = 1 and DN,H ≤
CN−1+ε, and the obtained error will be of the order

O
(

N−1+ε+
Ps

j=1 Aj

)

.

When using importance sampling with a distribution that has different
tail behavior than the original distribution, one often ends up with a singular
integral, where the density also has a singularity at the boundary. In this case,
Mε is not finite, and the bound from above does not give any sensible result.

On the other hand, if the density tends to zero, one has to expect that
the effect of the singularity of the functions should be somehow lightened.
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Thus we will now look at densities that fulfill another ”growth condition” in
a region U s \ K around the origin:

∀x ∈ Us \ K : h(x) ≤ Ch

s
∏

j=1

(

x(j)
)−Ãj

, for some Ãj < 1, Ch ∈ R (17)

If Ãj = 1, the bound is not integrable any more. However, since h is a dis-
tribution density function and thus integrable, one should be able to find an
integrable bound. We will also assume that Aj + Ãj < 1, as otherwise the
bound for the whole integral would be infinite.

Using this growth condition, one can now prove a version of the theorem
that takes into account the behavior of h(x) near the origin (or all corners):

Theorem 5. Let ωN , H, and f be the sequence, distribution, and integrand
from Theorem 4. If furthermore the density h(x) satisfies the growth condition
(17), then

∣

∣

∣

∣

∣

∫

Us

f(x)dH(x) − 1

N

N
∑

n=1

f (xn)

∣

∣

∣

∣

∣

≤ C1DN,HNr
Ps

j=1 Aj +C̃2N
r(max(Aj+Ãj)−1)

with C1 from Theorem 4, and C̃2 = B̃ Ch

∏s
j=1

1
1−Aj−Ãj

s C1−min(Aj+Ãj).

Proof. The proof follows along the lines of Theorem 4, the major difference
being in the bound for the first term:

∫

Us\K

∣

∣

∣
f(x) − f̃(x)

∣

∣

∣
h(x)dx ≤ B̃Ch

∫

Us\K

s
∏

j=1

(

x(j)
)−(Aj+Ãj)

dx

≤ B̃Ch

s
∏

j=1

1

1 − (Aj + Ãj)
C1−min(Aj+Ãj)sNr(max(Aj+Ãj)−1) . ut

5.2 Hyperbolic Regions

A serious improvement in the bound for the error order can be obtained by
choosing sequences that avoid the origin in a hyperbolic sense (i.e. sequences
that lie in Korig

prod(ε)) and thus more strongly, as Owen [15] showed for the
uniform distribution. In that case, the

∑

Aj in the bound can be replaced by
maxAj . We will now state a similar theorem for arbitrary distributions H :

Theorem 6. Let f(x) be a real-valued function on U s (possibly unbounded
at the lower boundary) which satisfies growth condition (13). Let furthermore
ωN = (xi)1≤i≤N be a point set with xi ∈ Korig

prod(εN ) and 0 < εN = CN−r < 1
for some constants C, r > 0. Finally, let H(x) be a distribution on U s with
density h(x) that satisfies growth condition (17). Then for all η, η̃ > 0 we have
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∣

∣

∣

∣

∣

∫

Us

f(x)dH(x) − 1

N

N
∑

n=1

f (xn)

∣

∣

∣

∣

∣

≤ C(1)
η DN,H (ω) Nη+r maxj Aj

+ C
(2)
η̃ N η̃+r maxj(Aj+Ãj)−r (18)

for constants C
(1)
η and C

(2)
η̃ . A similar bound holds for the corner case when

εN < 2−s. The bound holds with η = 0 if the maximum among the Aj is

unique, and with η̃ = 0 if the maximum among the Aj + Ãj is unique.

Proof. We again denote by f̃ the low-variation extension of f from Korig
prod(εN )

to Us with anchor 1. Again (16) holds, and the first term can be bounded by

∫

Us\K

∣

∣

∣
f(x) − f̃(x)

∣

∣

∣
h(x)dx ≤ B̃Ch

∫

Us\K

s
∏

j=1

(

x(j)
)−(Aj+Ãj)

dx

= O
(

ε1−maxj(Aj+Ãj)
)

(19)

using a lemma of Sobol ([17, Lemma 3] or [16, Lemma 5.4]) if all Aj + Ãj are

distinct. If any two of the Aj + Ãj are equal, and they are not the maximum,
one can increase one of them by a small value without affecting the max. If
the maximum is not distinct, one has to increase some of them and thus the
maximum by no more than η̃/r.

The variation of f̃ was already proved by Owen to be bounded by
VHK(f̃) ≤ C1N

r maxj Aj if the maximum among the Aj is distinct. If this
is not the case a similar argument like before brings in the η in the bound.

Combining these two bounds, we arrive at (18).
The corner case can be argued similarly (see [16, Proof of Theorem 5.5]) by

splitting the unit cube into 2s subcubes and investigating each separately. ut

Remark 5. Determination of the asymptotics of εN for hyperbolic regions is
more delicate than for the L-shaped regions. In particular for the corner case
not much is known even for the classical sequences and the uniform distri-
bution (see e.g. [15]). Neverthenless, it is obvious that sequences obtained
by Hlawka-Mück’s construction or by interpolation do not result in better
asymptotics than N−s. Thus, in combination with classical low discrepancy
sequences one will get error estimates of the order

O
(

N−1+ε+s maxj=1,...,s Aj
)

.
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